Non-Regular Pseudo-Differential Operators on Matrix Weighted Besov-Triebel-Lizorkin Spaces

被引:3
作者
Bai, Tengfei [1 ]
Xu, Jingshi [2 ]
机构
[1] Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R China
[2] Guilin Univ Elect Technol, Guangxi Coll & Univ Key Lab Data Anal & Computat, Ctr Appl Math Guangxi, Sch Math & Comp Sci, Guilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Pseudo-differential operator; matrix weight; Besov space; Triebel-Lizorkin space; BOUNDEDNESS;
D O I
10.4208/jms.v57n1.24.05
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we obtain the boundedness of non-regular pseudo-differential operators with symbols in Besov spaces on matrix-weighted Besov-Triebel-Lizorkin spaces. These symbols include the classical H & ouml;rmander classes.
引用
收藏
页码:84 / 100
页数:17
相关论文
共 38 条
[1]  
Abels H., 2012, De Gruyter Graduate Lectures
[2]  
[Anonymous], 2000, Mathematical Surveys and Monographs
[3]  
[Anonymous], 1983, Monographs in Mathematics, DOI DOI 10.1007/978-3-0346-0416-1
[4]  
[Anonymous], 1985, Ann. Global Anal. Geom, DOI DOI 10.1007/BF00054489
[5]  
[Anonymous], 1988, Tsukuba J. Math.
[6]  
Bai T, Characterizations of and Pseudo-differential operators on matrix weighted Besov-Triebel-Lizorkin spaces
[7]  
Bu F, 2025, MATH ANN, V391, P6105, DOI 10.1007/s00208-024-03059-5
[8]   Real-variable characterizations and their applications of matrix-weighted Besov spaces on spaces of homogeneous type [J].
Bu, Fan ;
Yang, Dachun ;
Yuan, Wen .
MATHEMATISCHE ZEITSCHRIFT, 2023, 305 (01)
[9]   Function spaces of variable smoothness and integrability [J].
Diening, L. ;
Hasto, P. ;
Roudenko, S. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (06) :1731-1768
[10]   On the boundedness of pseudo-differential operators on weighted Besov-Triebel spaces [J].
Dintelmann, P .
MATHEMATISCHE NACHRICHTEN, 1997, 183 :43-53