Development of a mathematical model for investigation of hollow-fiber membrane contactor for membrane distillation desalination

被引:4
作者
Yang, Yang [1 ]
Espin, Cristian German Santiana [2 ]
AL-Khafaji, Mohsin O. [3 ]
Kumar, Anjan [4 ]
Velasco, Nancy [5 ]
Abdulameer, Sajjad Firas [6 ,7 ]
Alawadi, Ahmed [2 ,8 ,9 ,10 ]
Alam, Mohammad Mahtab [11 ]
Dadabaev, Umidjon Abdusamat Ugli [12 ]
Mayorga, Diego [13 ]
机构
[1] Chengdu Sport Univ, Coll Phys Educ, Chengdu 610041, Sichuan, Peoples R China
[2] Escuela Super Politecn Chimborazo ESPOCH, Fac Ciencias Pecuarias, Panamericana Km 1 1-2, Riobamba 060155, Ecuador
[3] Al Mustaqbal Univ Coll, Air Conditioning & Refrigerat Tech Engn Dept, Babylon 51001, Iraq
[4] GLA Univ, Dept ECE, Mathura 281406, India
[5] Escuela Super Politecn Chimborazo ESPOCH, Fac Informat & Elect, Panamericana Km 1 1-2, Riobamba 060155, Ecuador
[6] Al Ayen Univ, Sci Res Ctr, Thi Qar, Iraq
[7] Univ Kerbala, Coll Engn, Civil Engn Dept, Karbala, Iraq
[8] Islamic Univ, Coll Tech Engn, Najaf, Iraq
[9] Islamic Univ Al Diwaniyah, Coll Tech Engn, Al Diwaniyah, Iraq
[10] Islamic Univ Babylon, Coll Tech Engn, Babylon, Iraq
[11] King Khalid Univ, Coll Appl Med Sci, Dept Basic Med Sci, Abha 61421, Saudi Arabia
[12] Tashkent State Univ Econ, World Econ Dept, Tashkent, Uzbekistan
[13] Escuela Super Politecn Chimborazo ESPOCH, Fac Mecan, Panamericana Km 1 1-2, Riobamba 060155, Ecuador
关键词
Membrane; Mass transfer; Simulation; SVM; Deep Neural Network; Kernel Ridge Regression;
D O I
10.1016/j.molliq.2024.124907
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This research investigates the predictive modeling of a dataset containing parameters denoted by r(m), z(m), and T(K) which is temperature. The considered process is a membrane distillation (MD) for separation of compounds based on temperature gradient. A membrane contactor is used for the process, and the computations are performed in the context of computational fluid dynamics (CFD) and machine learning. The dataset, which is generated by CFD modeling and encompasses over 5,000 data points, is analyzed using three distinct regression models: Support Vector Machine (SVM), Deep Neural Network (DNN), and Kernel Ridge Regression (KRR). Hyperparameter tuning is performed employing the Stochastic Fractal Search (SFS) algorithm. Our findings unraveled the nuanced intricacies of each model 's performance, gauged through a comprehensive set of metrics. The RMSE, MAPE, and R 2 score collectively offer a robust evaluation framework. The Deep Neural Network (DNN) exhibits a compelling RMSE of 7.7001E-01, a remarkably low MAPE of 2.05131E-03, and an impressive R 2 score of 0.97054. Meanwhile, the Support Vector Machine (SVM) showcases a notable RMSE of 1.7215E-01, a minimal MAPE of 2.90820E-04, and a remarkably high R 2 score of 0.99839. On the other hand, the Kernel Ridge Regression (KRR) model presents an RMSE of 1.3588E + 00, a MAPE of 2.63550E-03, and an R 2 score of 0.90042.
引用
收藏
页数:11
相关论文
共 33 条
[1]   A novel stochastic fractal search algorithm with fitness-Distance balance for global numerical optimization [J].
Aras, Sefa ;
Gedikli, Eyup ;
Kahraman, Hamdi Tolga .
SWARM AND EVOLUTIONARY COMPUTATION, 2021, 61
[2]   Integration of waste heat recovered from water electrolysis to desalinate feedwater with membrane distillation [J].
Arthur, Tim ;
Millar, Graeme J. ;
Love, Jonathan .
JOURNAL OF WATER PROCESS ENGINEERING, 2023, 56
[3]   Separation of rare earth elements using chelating agent-assisted electrodialysis: Phenomenological modeling and comparison with experimental data [J].
Azimi, Gisele ;
Ding, Lingyang ;
Mosadeghsedghi, Sanaz ;
Kenari, Laleh Dashtban ;
Baghbanzadeh, Mohammadali ;
Volchek, Konstantin .
HYDROMETALLURGY, 2024, 224
[4]  
Babanezhad M., 2020, Developing Intelligent Algorithm as a Machine Learning Overview over the Big Data Generated by Euler-Euler Method To Simulate Bubble Column Reactor Hydrodynamics
[5]   Velocity prediction of nanofluid in a heated porous pipe: DEFIS learning of CFD results [J].
Babanezhad, Meisam ;
Behroyan, Iman ;
Marjani, Azam ;
Shirazian, Saeed .
SCIENTIFIC REPORTS, 2021, 11 (01)
[6]  
Bishop C. M., 2006, Pattern Recognition and Machine Learning
[7]  
Botchkarev A., 2018, Evaluating performance of regression machine learning models using multiple error metrics in azure machine learning studio, DOI [10.2139/SSRN.3177507, DOI 10.2139/SSRN.3177507]
[8]  
Botchkarev A, 2018, Arxiv, DOI [arXiv:1809.03006, DOI 10.48550/ARXIV.1809.03006, DOI 10.48550/ARXIV.1809.03006.ARXIV]
[9]  
Boukhriss M., 2023, Sol. Compass, V7
[10]   Deep Neural Networks as Scientific Models [J].
Cichy, Radoslaw M. ;
Kaiser, Daniel .
TRENDS IN COGNITIVE SCIENCES, 2019, 23 (04) :305-317