FAIR enough: Building an academic data ecosystem to make real-world data available for translational research

被引:4
作者
Chu, Isabella [1 ]
Miller, Rebecca [1 ]
Mathews, Ian [2 ]
Vala, Ayin [1 ]
Sept, Lesley [1 ]
O'Hara, Ruth [3 ,4 ]
Rehkopf, David H. [1 ,5 ,6 ,7 ,8 ,9 ]
机构
[1] Stanford Univ, Stanford Ctr Populat Hlth Sci, Stanford Sch Med, Palo Alto, CA 94305 USA
[2] Redivis Inc, Oakland, CA USA
[3] Stanford Univ, Stanford Sch Med, Psychiat & Behav Sci, Stanford, CA USA
[4] Vet Adm Palo Alto Hlth Care Syst, Sierra Pacific Mental Illness Res Educ & Clin Ctr, Palo Alto, CA USA
[5] Stanford Univ, Stanford Sch Med, Dept Epidemiol & Populat Hlth, Stanford, CA 94305 USA
[6] Stanford Univ, Stanford Sch Med, Dept Med, Div Primary Care & Populat Hlth, Stanford, CA 94305 USA
[7] Stanford Univ, Stanford Sch Med, Dept Pediat, Stanford, CA 94305 USA
[8] Stanford Univ, Stanford Sch Med, Dept Hlth Policy, Stanford, CA 94305 USA
[9] Stanford Univ, Dept Sociol, Stanford, CA 94305 USA
关键词
Clinical and translational science awards (CTSA); claims; data management; electronic health records (EHR); real-world data; translational research;
D O I
10.1017/cts.2024.530
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The Stanford Population Health Sciences Data Ecosystem was created to facilitate the use of large datasets containing health records from hundreds of millions of individuals. This necessitated technical solutions optimized for an academic medical center to manage and share high-risk data at scale. Through collaboration with internal and external partners, we have built a Data Ecosystem to host, curate, and share data with hundreds of users in a secure and compliant manner. This platform has enabled us to host unique data assets and serve the needs of researchers across Stanford University, and the technology and approach were designed to be replicable and portable to other institutions. We have found, however, that though these technological advances are necessary, they are not sufficient. Challenges around making data Findable, Accessible, Interoperable, and Reusable remain. Our experience has demonstrated that there is a high demand for access to real-world data, and that if the appropriate tools and structures are in place, translational research can be advanced considerably. Together, technological solutions, management structures, and education to support researcher, data science, and community collaborations offer more impactful processes over the long-term for supporting translational research with real-world data.
引用
收藏
页数:9
相关论文
共 23 条
[1]  
All of Us Research Program, "All of Us Researcher Workbench"
[2]   Intersectionality in quantitative research: A systematic review of its emergence and applications of theory and methods [J].
Bauer, Greta R. ;
Churchill, Siobhan M. ;
Mahendran, Mayuri ;
Walwyn, Chantel ;
Lizotte, Daniel ;
Villa-Rueda, Alma Angelica .
SSM-POPULATION HEALTH, 2021, 14
[3]   Diversity, equity and inclusion actions from the NCATS Clinical and Translational Science awarded programs [J].
Boulware, L. Ebony ;
Vitale, Alfred ;
Ruiz, Raquel ;
Corbie, Giselle ;
Aguilar-Gaxiola, Sergio ;
Wilkins, Consuelo H. ;
Egede, Leonard E. .
NATURE MEDICINE, 2022, 28 (09) :1730-1731
[4]   The Current Landscape in Biostatistics of Real-World Data and Evidence: Clinical Study Design and Analysis [J].
Chen, Jie ;
Ho, Martin ;
Lee, Kwan ;
Song, Yang ;
Fang, Yixin ;
Goldstein, Benjamin A. ;
He, Weili ;
Irony, Telba ;
Jiang, Qi ;
van der Laan, Mark ;
Lee, Hana ;
Lin, Xiwu ;
Meng, Zhaoling ;
Mishra-Kalyani, Pallavi ;
Rockhold, Frank ;
Wang, Hongwei ;
White, Roseann .
STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2023, 15 (01) :29-42
[5]  
Childs D., InCommon
[6]  
Guha RV., Data Commons
[7]   The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment [J].
Haendel, Melissa A. ;
Chute, Christopher G. ;
Bennett, Tellen D. ;
Eichmann, David A. ;
Guinney, Justin ;
Kibbe, Warren A. ;
Payne, Philip R. O. ;
Pfaff, Emily R. ;
Robinson, Peter N. ;
Saltz, Joel H. ;
Spratt, Heidi ;
Suver, Christine ;
Wilbanks, John ;
Wilcox, Adam B. ;
Williams, Andrew E. ;
Wu, Chunlei ;
Blacketer, Clair ;
Bradford, Robert L. ;
Cimino, James J. ;
Clark, Marshall ;
Colmenares, Evan W. ;
Francis, Patricia A. ;
Gabriel, Davera ;
Graves, Alexis ;
Hemadri, Raju ;
Hong, Stephanie S. ;
Hripscak, George ;
Jiao, Dazhi ;
Klann, Jeffrey G. ;
Kostka, Kristin ;
Lee, Adam M. ;
Lehmann, Harold P. ;
Lingrey, Lora ;
Miller, Robert T. ;
Morris, Michele ;
Murphy, Shawn N. ;
Natarajan, Karthik ;
Palchuk, Matvey B. ;
Sheikh, Usman ;
Solbrig, Harold ;
Visweswaran, Shyam ;
Walden, Anita ;
Walters, Kellie M. ;
Weber, Griffin M. ;
Zhang, Xiaohan Tanner ;
Zhu, Richard L. ;
Amor, Benjamin ;
Girvin, Andrew T. ;
Manna, Amin ;
Qureshi, Nabeel .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2021, 28 (03) :427-443
[8]   The REDCap consortium: Building an international community of software platform partners [J].
Harris, Paul A. ;
Taylor, Robert ;
Minor, Brenda L. ;
Elliott, Veida ;
Fernandez, Michelle ;
O'Neal, Lindsay ;
McLeod, Laura ;
Delacqua, Giovanni ;
Delacqua, Francesco ;
Kirby, Jacqueline ;
Duda, Stephany N. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2019, 95
[9]   Research electronic data capture (REDCap)-A metadata-driven methodology and workflow process for providing translational research informatics support [J].
Harris, Paul A. ;
Taylor, Robert ;
Thielke, Robert ;
Payne, Jonathon ;
Gonzalez, Nathaniel ;
Conde, Jose G. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2009, 42 (02) :377-381
[10]  
Jokl J., 2010, InCommon Certification Practices Statement for Server Certificates