LTFormer: A light-weight transformer-based self-supervised matching network for heterogeneous remote sensing images

被引:7
作者
Zhang, Wang [1 ]
Li, Tingting [1 ]
Zhang, Yuntian [1 ]
Pei, Gensheng [1 ]
Jiang, Xiruo [1 ]
Yao, Yazhou [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Peoples R China
关键词
Image matching; Transformer; Light-weight; Heterogeneous remote sensing images; Self-supervised learning; REGISTRATION;
D O I
10.1016/j.inffus.2024.102425
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Matching visible and near-infrared (NIR) images is a major challenge in remote sensing image fusion due to nonlinear radiometric differences. Deep learning has shown promise in computer vision, but most methods rely on supervised learning with limited annotated data in remote sensing. To address this, we propose a novel keypoint descriptor approach that obtains robust feature descriptors via a self-supervised matching network. Our light-weight transformer network, LTFormer, generates deep-level feature descriptors. Furthermore, we implement an innovative triplet loss function, LT Loss, to enhance the matching performance further. Our approach outperforms conventional hand-crafted local feature descriptors and proves equally competitive compared to state-of-the-art deep learning-based methods, even amidst the shortage of annotated data. Code and pre-trained model are available at https://github.com/NUST-Machine-Intelligence-Laboratory/LTFormer.
引用
收藏
页数:11
相关论文
共 51 条
[1]   Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces [J].
Alcantarilla, Pablo F. ;
Nuevo, Jesus ;
Bartoli, Adrien .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,
[2]   KAZE Features [J].
Alcantarilla, Pablo Fernandez ;
Bartoli, Adrien ;
Davison, Andrew J. .
COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 :214-227
[3]  
Balntas V, 2016, BRIT MACH VIS C BMVC, DOI [DOI 10.5244/C.30.119, 10.5244/C.30.119]
[4]   Speeded-Up Robust Features (SURF) [J].
Bay, Herbert ;
Ess, Andreas ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) :346-359
[5]   BRIEF: Binary Robust Independent Elementary Features [J].
Calonder, Michael ;
Lepetit, Vincent ;
Strecha, Christoph ;
Fua, Pascal .
COMPUTER VISION-ECCV 2010, PT IV, 2010, 6314 :778-792
[6]   Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking [J].
Cao, Jinkun ;
Pang, Jiangmiao ;
Weng, Xinshuo ;
Khirodkar, Rawal ;
Kitani, Kris .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :9686-9696
[7]   Exploring the Potential of Unsupervised Image Synthesis for SAR-Optical Image Matching [J].
Du, Wen-Liang ;
Zhou, Yong ;
Zhao, Jiaqi ;
Tian, Xiaolin ;
Yang, Zhi ;
Bian, Fuqiang .
IEEE ACCESS, 2021, 9 :71022-71033
[8]  
Han XF, 2015, PROC CVPR IEEE, P3279, DOI 10.1109/CVPR.2015.7298948
[9]   Binary Change Guided Hyperspectral Multiclass Change Detection [J].
Hu, Meiqi ;
Wu, Chen ;
Du, Bo ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 :791-806
[10]   Identifying Corresponding Patches in SAR and Optical Images With a Pseudo-Siamese CNN [J].
Hughes, Lloyd H. ;
Schmitt, Michael ;
Mou, Lichao ;
Wang, Yuanyuan ;
Zhu, Xiao Xiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (05) :784-788