Emotion recognition from multichannel EEG signals based on low-rank subspace self-representation features

被引:2
|
作者
Gao, Yunyuan [1 ]
Xue, Yunfeng [1 ]
Gao, Jian [2 ]
机构
[1] Hangzhou Dianzi Univ, Coll Automat, Hangzhou, Peoples R China
[2] Hangzhou Mingzhou Naokang Rehabil Hosp, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Low rank subspace; RPCA; Feature extraction; Tucker dimensionality reduction; Emotion recognition;
D O I
10.1016/j.bspc.2024.106877
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In recent years, emotion recognition based on electroencephalogram (EEG) has become the research focus in human-computer interaction (HCI), but deficiencies in EEG feature extraction and noise suppression are still challenging. In this paper, a novel robust low-rank subspace self-representation (RLSR) of EEG is developed for emotion recognition. Instead of using classical time-frequency EEG feature, the data-driven based EEG self- representation in low-rank subspace is extracted for emotion characterization. The Robust Principal Component Analysis (RPCA) is incorporated to separate the noise part in the process of solving self-representation. The accuracy and robustness of the result are improved because of the superior features and noise suppression. To fully exploit the effective knowledge of different EEG frequency bands, the Tucker decomposition based data dimensionality reduction is introduced. Experiments conducted on the public dataset DEAP reveal that the average accuracies of the proposed method can reach to 93.04% and 93.13% for binary classification of valence and arousal, respectively. The average accuracy reaches to 88.82 % of four-class classification.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Compressed Sensing of Multichannel EEG Signals: The Simultaneous Cosparsity and Low-Rank Optimization
    Liu, Yipeng
    De Vos, Maarten
    Van Huffel, Sabine
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (08) : 2055 - 2061
  • [12] Low-rank unsupervised graph feature selection via feature self-representation
    Wei He
    Xiaofeng Zhu
    Debo Cheng
    Rongyao Hu
    Shichao Zhang
    Multimedia Tools and Applications, 2017, 76 : 12149 - 12164
  • [13] Low-rank unsupervised graph feature selection via feature self-representation
    He, Wei
    Zhu, Xiaofeng
    Cheng, Debo
    Hu, Rongyao
    Zhang, Shichao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (09) : 12149 - 12164
  • [14] Face Recognition Based on Low-Rank Matrix Representation
    Nguyen Hoang Vu
    Huang Rong
    Yang Wankou
    Sun Changyin
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 4647 - 4652
  • [15] An Efficient LSTM Network for Emotion Recognition From Multichannel EEG Signals
    Du, Xiaobing
    Ma, Cuixia
    Zhang, Guanhua
    Li, Jinyao
    Lai, Yu-Kun
    Zhao, Guozhen
    Deng, Xiaoming
    Liu, Yong-Jin
    Wang, Hongan
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (03) : 1528 - 1540
  • [16] An efficient matrix factorization based low-rank representation for subspace clustering
    Liu, Yuanyuan
    Jiao, L. C.
    Shang, Fanhua
    PATTERN RECOGNITION, 2013, 46 (01) : 284 - 292
  • [17] A subspace clustering algorithm based on simultaneously sparse and low-rank representation
    Liu, Xiaolan
    Yi, Miao
    Han, Le
    Deng, Xue
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (01) : 621 - 633
  • [18] Projection subspace based low-rank representation for sparse hyperspectral unmixing
    Zhu, Zi-Yue
    Huang, Ting-Zhu
    Huang, Jie
    APPLIED MATHEMATICAL MODELLING, 2024, 125 : 463 - 481
  • [19] Common Subspace Based Low-Rank and Joint Sparse Representation for Multi-view Face Recognition
    Wang, Ziqiang
    Ouyang, Yingzhi
    Zhu, Weidan
    Sun, Bin
    Liu, Qiang
    IMAGE AND GRAPHICS, ICIG 2019, PT III, 2019, 11903 : 145 - 156
  • [20] LOW-RANK SPARSE REPRESENTATION-BASED TRANSITION SUBSPACE LEARNING ALGORITHM FOR EPILEPTIC SEIZURE RECOGNITION
    Zang, Hao
    Bi, Anqi
    Zhao, Lu
    Ying, Wenhao
    Qian, Jiansheng
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (08)