Epileptic Seizures Detection using Fusion of Artificial Neural Network with Hybrid Deep Learning

被引:0
|
作者
Asrithavalli, Penumalli [1 ]
Kumar, Kasturi Adbuth [1 ]
Anirudh, Pamidimukkala [1 ]
Begum, Benazir [1 ]
机构
[1] Hindustan Inst Technol & Sci, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
来源
2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024 | 2024年
关键词
EEG signals; CNN-GRU; ANN; Deep learning;
D O I
10.1109/ACCAI61061.2024.10602167
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The neurological condition epilepsy, which is characterized by recurring seizures, poses challenges in accurate and timely detection for effective management. This proposed system presents and evaluates a deep learning approach aimed at building patient-specific classifiers to use scalp EEG monitoring, a non-invasive measure of the brain's electrical activity, to identify the beginning of epileptic episodes. This endeavor is particularly difficult because of the differing nature of the brain's electrical action, which comprises various classes with covering characteristics. The EEG data is preprocessed to extract key features before training the ANN-CNN-GRU fusion model on a large dataset of labeled recordings, including seizure and non-seizure occurrences. The proposed fusion model demonstrates superior performance compared to individual ANN, CNN, and GRU models, achieving high accuracy, sensitivity, and specificity in detecting epileptic seizures. Structuring the issue into a suitable deep learning framework and determining crucial characteristics for differentiating seizure from other forms of brain activity were important stages in developing a high-performance algorithm. After being trained on two or more known seizures and evaluated on 969 hours of uninterrupted EEG data from 24 patients, the algorithm detected of 173 test seizures with a middle location delay of 3 seconds and a middle false discovery rate of two false discoveries per 24-hour period. The physio net database provided the CHB-MIT dataset used in this study.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Detection of Epileptic Seizures using Convolutional Neural Network
    Gupta, Surbhi
    Sameer, Mustafa
    Mohan, Neeraj
    2021 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2021, : 786 - 790
  • [2] An approach to automated classification of epileptic seizures using Artificial Neural Network
    Najumnissa, D.
    Devi, S. Shenbaga
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2009, 2 (04) : 382 - 399
  • [3] Epileptic Seizures Detection Using Deep Learning Techniques: A Review
    Shoeibi, Afshin
    Khodatars, Marjane
    Ghassemi, Navid
    Jafari, Mahboobeh
    Moridian, Parisa
    Alizadehsani, Roohallah
    Panahiazar, Maryam
    Khozeimeh, Fahime
    Zare, Assef
    Hosseini-Nejad, Hossein
    Khosravi, Abbas
    Atiya, Amir F.
    Aminshahidi, Diba
    Hussain, Sadiq
    Rouhani, Modjtaba
    Nahavandi, Saeid
    Acharya, Udyavara Rajendra
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (11)
  • [4] Optimized deep neural network architecture for robust detection of epileptic seizures using EEG signals
    Hussein, Ramy
    Palangi, Hamid
    Ward, Rabab K.
    Wang, Z. Jane
    CLINICAL NEUROPHYSIOLOGY, 2019, 130 (01) : 25 - 37
  • [5] Implementation of Machine Learning and Deep Learning Techniques for the Detection of Epileptic Seizures Using Intracranial Electroencephalography
    Kolodziej, Marcin
    Majkowski, Andrzej
    Rysz, Andrzej
    APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [6] Epileptic Seizures Detection Using iEEG Signals and Deep Learning Models
    Nourane Abderrahim
    Amira Echtioui
    Rafik Khemakhem
    Wassim Zouch
    Mohamed Ghorbel
    Ahmed Ben Hamida
    Circuits, Systems, and Signal Processing, 2024, 43 : 1597 - 1626
  • [7] Epileptic Seizures Detection Using iEEG Signals and Deep Learning Models
    Abderrahim, Nourane
    Echtioui, Amira
    Khemakhem, Rafik
    Zouch, Wassim
    Ghorbel, Mohamed
    Ben Hamida, Ahmed
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 43 (3) : 1597 - 1626
  • [8] A deep neural network for the classification of epileptic seizures using hierarchical attention mechanism
    Chirasani, Sateesh Kumar Reddy
    Manikandan, Suchetha
    SOFT COMPUTING, 2022, 26 (11) : 5389 - 5397
  • [9] Novel deep learning framework for detection of epileptic seizures using EEG signals
    Mallick, Sayani
    Baths, Veeky
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2024, 18
  • [10] Epileptic Seizures Prediction Using Deep Learning Techniques
    Usman, Syed Muhammad
    Khalid, Shehzad
    Aslam, Muhammad Haseeb
    IEEE ACCESS, 2020, 8 : 39998 - 40007