Exploring Dual Representations in Large-Scale Point Clouds: A Simple Weakly Supervised Semantic Segmentation Framework

被引:3
|
作者
Liu, Jiaming [1 ]
Wu, Yue [1 ]
Gong, Maoguo [1 ]
Miao, Qiguang [1 ]
Ma, Wenping [1 ]
Xu, Cai [1 ]
机构
[1] Xidian Univ, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Point Cloud Segmentation; Dual Representation; Semantic Query; Waekly Supervised Learning;
D O I
10.1145/3581783.3612224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing work shows that 3D point clouds produce only about a 4% drop in semantic segmentation even at 1% random point annotation, which inspires us to further explore how to achieve better results at lower cost. As scene point clouds provide position and color information and often used in tandem as the only input, with little work going into segmentation by fusing information from dual spaces. To optimize point cloud representations, we propose a novel framework for the dual representation query network (DRQNet). The proposed framework partitions the input point cloud into position and color spaces, using the separately extracted geometric structure and semantic context to create an internal supervisory mechanism that bridges the dual spaces and fuses the information. Adopting sparsely annotated points as the query set, DRQNet provide guidance and perceptual information for multi-stage point clouds through random sampling. More, to differentiate and enhance the features generated by local neighbourhoods within multiple perceptual fields, we design a representation selection module to identify the contributions made by the position and color of each query point, and weight them adaptively according to reliability. The proposed DRQNet(1) is robust to point cloud analysis and eliminates the effects of irregularities and disorder. Our method achieves significant performance gains on three mainstream benchmarks.
引用
收藏
页码:2371 / 2380
页数:10
相关论文
共 50 条
  • [1] Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud
    Zhang, Yachao
    Li, Zonghao
    Xie, Yuan
    Qu, Yanyun
    Li, Cuihua
    Mei, Tao
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3421 - 3429
  • [2] SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds
    Hu, Qingyong
    Yang, Bo
    Fang, Guangchi
    Guo, Yulan
    Leonardis, Ales
    Trigoni, Niki
    Markham, Andrew
    COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 : 600 - 619
  • [3] Label-efficient semantic segmentation of large-scale industrial point clouds using weakly supervised learning
    Yin, Chao
    Yang, Bo
    Cheng, Jack C. P.
    Gan, Vincent J. L.
    Wang, Boyu
    Yang, Ji
    AUTOMATION IN CONSTRUCTION, 2023, 148
  • [4] Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation
    Zhang, Yachao
    Qu, Yanyun
    Xie, Yuan
    Li, Zonghao
    Zheng, Shanshan
    Li, Cuihua
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15500 - 15508
  • [5] Semantic segmentation of large-scale point clouds with neighborhood uncertainty
    Bao, Yong
    Wen, Haibiao
    Zhang, Baoqing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (21) : 60949 - 60964
  • [6] WSPointNet: A multi-branch weakly supervised learning network for semantic segmentation of large-scale mobile laser scanning point clouds
    Lei, Xiangda
    Guan, Haiyan
    Ma, Lingfei
    Yu, Yongtao
    Dong, Zhen
    Gao, Kyle
    Delavar, Mahmoud Reza
    Li, Jonathan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 115
  • [7] Weakly Supervised Large-Scale Point Cloud Semantic Segmentation Based on Dual Consistency Constraints and Uncertainty-Aware Fusion
    Zhou, Ce
    Ling, Qiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [8] Multistage Scene-Level Constraints for Large-Scale Point Cloud Weakly Supervised Semantic Segmentation
    Su, Yanfei
    Cheng, Ming
    Yuan, Zhimin
    Liu, Weiquan
    Zeng, Wankang
    Wang, Cheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [9] GSIP: Green Semantic Segmentation of Large-Scale Indoor Point Clouds
    Zhang, Min
    Kadam, Pranav
    Liu, Shan
    Kuo, C. -C. Jay
    PATTERN RECOGNITION LETTERS, 2022, 164 : 9 - 15
  • [10] Learning Semantic Segmentation of Large-Scale Point Clouds With Random Sampling
    Hu, Qingyong
    Yang, Bo
    Xie, Linhai
    Rosa, Stefano
    Guo, Yulan
    Wang, Zhihua
    Trigoni, Niki
    Markham, Andrew
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 8338 - 8354