BC-FND: An Approach Based on Hierarchical Bilinear Fusion and Multimodal Consistency for Fake News Detection

被引:0
|
作者
Liu, Yahui [1 ]
Bing, Wanlong [1 ]
Ren, Shuai [1 ]
Ma, Hongliang [1 ]
机构
[1] Shihezi Univ, Sch Informat Sci & Technol, Shihezi 832003, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Fake news detection; social media; multimodal learning;
D O I
10.1109/ACCESS.2024.3392409
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fake news with multimedia on social media is deceptive, widely spread, and has serious negative effects. Therefore, multimodal fake news detection has become a popular and extensively studied topic. However, the existing methods have two shortcomings. 1) Different types of extractors are used for text and images, making it difficult to align the extracted features to the same embedding space. 2) The complex fusion approach leads to an increase in the number of features and parameters that generate redundancy and noise easily. To address these problems, we propose a simple yet powerful multimodal fake news detection model (BC-FND). It utilizes contrastive learning of CLIP to align textual and visual features to the same embedding space while using a consistency loss function to learn consistency between real news text and images as well as inconsistency between fake news text and images. Additionally, BERT is employed for extracting semantic and contextual information from text while a hierarchical bilinear fusion network is designed to achieve full complementarity between textual and visual features. Cross-entropy and consistency loss functions jointly optimize BC-FND for improved accuracy in detecting fake news. We also introduce the Weibo23 dataset which is more challenging since it's closer to the real social media environment. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods on two public datasets and the Weibo23 dataset.
引用
收藏
页码:62738 / 62749
页数:12
相关论文
共 50 条
  • [41] Multimodal fake news detection through data augmentation-based contrastive learning
    Hua, Jiaheng
    Cui, Xiaodong
    Li, Xianghua
    Tang, Keke
    Zhu, Peican
    APPLIED SOFT COMPUTING, 2023, 136
  • [42] MFUIE: A Fake News Detection Model Based on Multimodal Features and User Information Enhancement
    Hao, Xiulan
    Xu, Wenjing
    Huang, Xu
    Sheng, Zhenzhen
    Yan, Huayun
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2025, 12 (01):
  • [43] GS2F: Multimodal Fake News Detection Utilizing Graph Structure and Guided Semantic Fusion
    Zhou, Dong
    Qiang, Ouyang
    Lin, Nankai
    Zhou, Yongmei
    Yamg, Aimin
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2025, 24 (02)
  • [44] A Temporal-and-Spatial Flow Based Multimodal Fake News Detection by Pooling and Attention Blocks
    Guo, Ying
    Song, Wei
    IEEE ACCESS, 2022, 10 : 131498 - 131508
  • [45] A Hybrid Linguistic and Knowledge-Based Analysis Approach for Fake News Detection on Social Media
    Seddari, Noureddine
    Derhab, Abdelouahid
    Belaoued, Mohamed
    Halboob, Waleed
    Al-Muhtadi, Jalal
    Bouras, Abdelghani
    IEEE ACCESS, 2022, 10 : 62097 - 62109
  • [46] FAKE NEWS DETECTION BASED ON MULTI-FEATURE FUSION UNDER ATTENTION GUIDANCE
    Peng, Yan
    Wu, Huimin
    Wang, Lei
    Wang, Jie
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (09)
  • [47] Human Cognition-Based Consistency Inference Networks for Multi-Modal Fake News Detection
    Wu, Lianwei
    Liu, Pusheng
    Zhao, Yongqiang
    Wang, Peng
    Zhang, Yangning
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (01) : 211 - 225
  • [48] Automatic Fake News Detection in Political Platforms - A Transformer-based Approach
    Raza, Shaina
    CASE 2021: THE 4TH WORKSHOP ON CHALLENGES AND APPLICATIONS OF AUTOMATED EXTRACTION OF SOCIO-POLITICAL EVENTS FROM TEXT (CASE), 2021, : 68 - 78
  • [49] A multimodal fake news detection model based on crossmodal attention residual and multichannel convolutional neural networks
    Song, Chenguang
    Ning, Nianwen
    Zhang, Yunlei
    Wu, Bin
    INFORMATION PROCESSING & MANAGEMENT, 2021, 58 (01)
  • [50] Fake News Detection Based on Cross-Modal Message Aggregation and Gated Fusion Network
    Shan, Fangfang
    Liu, Mengyao
    Zhang, Menghan
    Wang, Zhenyu
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (01): : 1521 - 1542