Generalization of the Distance Fibonacci Sequences

被引:0
|
作者
Yilmaz, Nur Seyma [1 ]
Wloch, Andrej [2 ]
Ozkan, Engin [3 ]
机构
[1] Erzincan Binali Yildirim Univ, Grad Sch Nat & Appl Sci, TR-24100 Erzincan, Turkiye
[2] Rzeszow Univ Technol, Fac Math & Appl Phys, PL-35959 Rzeszow, Poland
[3] Marmara Univ, Fac Sci, Dept Math, TR-34722 Istanbul, Turkiye
关键词
distance Fibonacci numbers; generalized Fibonacci numbers; negative integers; matrix generators; HEISENBERG ALGEBRAS; NUMBERS;
D O I
10.3390/axioms13070420
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we introduced a generalization of distance Fibonacci sequences and investigate some of its basic properties. We then proposed a generalization of distance Fibonacci sequences for negative integers and investigated some basic properties. Additionally, we explored the construction of matrix generators for these sequences and offered a graphical representation to clarify their structure. Furthermore, we demonstrated how these generalizations can be applied to obtain the Padovan and Narayana sequences for specific parameter values.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] On a generalization for fibonacci quaternions
    Halici, Serpil
    Karatas, Adnan
    CHAOS SOLITONS & FRACTALS, 2017, 98 : 178 - 182
  • [2] On Doubled and Quadrupled Fibonacci Type Sequences
    Yilmaz, Nur Seyma
    Wloch, Andrzej
    Ozkan, Engin
    Strzalka, Dominik
    ANNALES MATHEMATICAE SILESIANAE, 2024, 38 (02) : 314 - 335
  • [3] Distance Fibonacci Polynomials by Graph Methods
    Strzalka, Dominik
    Wolski, Slawomir
    Wloch, Andrzej
    SYMMETRY-BASEL, 2021, 13 (11):
  • [4] Distance Fibonacci Polynomials
    Bednarz, Urszula
    Wolowiec-Musial, Malgorzata
    SYMMETRY-BASEL, 2020, 12 (09):
  • [5] Fibonacci p-sequences in groups
    Deveci, Omur
    Avci, Metin
    MAEJO INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 2015, 9 (03) : 301 - 311
  • [6] The Fibonacci-Circulant Sequences and Their Applications
    Deveci, Omur
    Karaduman, Erdal
    Campbell, Colin M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A4): : 1033 - 1038
  • [7] On square classes in generalized Fibonacci sequences
    Siar, Zafer
    Keskin, Refik
    ACTA ARITHMETICA, 2016, 174 (03) : 277 - 295
  • [8] (2, k)-Distance Fibonacci Polynomials
    Brod, Dorota
    Wloch, Andrzej
    SYMMETRY-BASEL, 2021, 13 (02): : 1 - 10
  • [9] On a new type of distance Fibonacci numbers
    Wloch, Iwona
    Bednarz, Urszula
    Brod, Dorota
    Wloch, Andrzej
    Wolowiec-Musial, Malgorzata
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) : 2695 - 2701
  • [10] ON THE DISTANCE BETWEEN GENERALIZED FIBONACCI NUMBERS
    Bravo, Jhon J.
    Gomez, Carlos A.
    Luca, Florian
    COLLOQUIUM MATHEMATICUM, 2015, 140 (01) : 107 - 118