UAV Data Collection With Deep Reinforcement Learning for Grant-Free IoT

被引:0
|
作者
Zhong, Jiale [1 ]
Hu, Yingdong [1 ]
Li, Ye [1 ]
Xu, Yicheng [1 ]
Gao, Ruifeng [2 ]
Wang, Jue [1 ]
机构
[1] Nantong Univ, Sch Informat Sci & Technol, Nantong, Peoples R China
[2] Nantong Univ, Sch Transportat & Civil Engn, Nantong, Peoples R China
关键词
UAV trajectory optimization; data collection; collision avoidance; deep reinforcement learning;
D O I
10.1109/WCNC57260.2024.10571061
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The utilization of unmanned aerial vehicles (UAVs) for efficient data collection has gained considerable attention. In this paper, we examine a scenario involving grant-free access from Internet of Things (IoT) devices, where the random access may cause packet collision, stemming from multiple devices concurrently transmitting data. To address this issue, we propose a deep reinforcement learning-based collision avoidance (DRL-CA) approach for UAV data collection, which optimizes the UAV trajectory. The approach assists UAVs in identifying and maximizing the acquisition of device packet in an environment characterized by probabilistic packet transmission and potential collisions among device packets while ensuring a timely arrival at the destination. Through simulations, our proposed method effectively mitigates unnecessary conflicts among device packets while achieving the optimization objective.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Cooperative Data Collection for UAV-Assisted Maritime IoT Based on Deep Reinforcement Learning
    Fu, Xiuwen
    Huang, Xiong
    Pan, Qiongshan
    Pace, Pasquale
    Aloi, Gianluca
    Fortino, Giancarlo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 10333 - 10349
  • [12] Fairness aware deep reinforcement learning for grant-free NOMA-IoT networks (vol 25, pg 1, 2024)
    Balci, Abdullah
    Sokullu, Radosveta
    INTERNET OF THINGS, 2024, 26
  • [13] Deep Reinforcement Learning Based Energy Efficient Multi-UAV Data Collection for IoT Networks
    Khodaparast, Seyed Saeed
    Lu, Xiao
    Wang, Ping
    Uyen Trang Nguyen
    IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, 2021, 2 : 249 - 260
  • [14] Deep Reinforcement Learning-Based Collaborative Data Collection in UAV-Assisted Underwater IoT
    Fu, Xiuwen
    Kang, Shengqi
    IEEE SENSORS JOURNAL, 2025, 25 (01) : 1611 - 1626
  • [15] Deep Reinforcement Learning Based Data Collection in IoT Networks
    Khodaparast, Seyed Saeed
    Lu, Xiao
    Wang, Ping
    Uyen Trang Nguyen
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 818 - 823
  • [16] Completion Time Minimization for Data Collection in a UAV-enabled IoT Network: A Deep Reinforcement Learning Approach
    Zhang, Shuai
    Liu, Weiqi
    Ansari, Nirwan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (11) : 14734 - 14742
  • [17] A Deep Reinforcement Learning Approach for Multi-UAV-Assisted Data Collection in Wireless Powered IoT networks
    Li, Zhiming
    Liu, Juan
    Xie, Lingfu
    Wang, Xijun
    Jin, Ming
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 44 - 49
  • [18] Multitask Transfer Deep Reinforcement Learning for Timely Data Collection in Rechargeable-UAV-Aided IoT Networks
    Yi, Mengjie
    Wang, Xijun
    Liu, Juan
    Zhang, Yan
    Hou, Ronghui
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (23) : 20545 - 20559
  • [19] Deep Reinforcement Learning for AoI Minimization in UAV-Aided Data Collection for WSN and IoT Applications: A Survey
    Amodu, Oluwatosin Ahmed
    Jarray, Chedia
    Mahmood, Raja Azlina Raja
    Althumali, Huda
    Bukar, Umar Ali
    Nordin, Rosdiadee
    Abdullah, Nor Fadzilah
    Luong, Nguyen Cong
    IEEE ACCESS, 2024, 12 : 108000 - 108040
  • [20] Deep Reinforcement Learning for UAV-Based SDWSN Data Collection
    Karegar, Pejman A.
    Al-Hamid, Duaa Zuhair
    Chong, Peter Han Joo
    FUTURE INTERNET, 2024, 16 (11)