A priori estimates and existence of solutions to a system of nonlinear elliptic equations

被引:0
作者
Jiang, Yongsheng [1 ]
Wei, Na [1 ,2 ]
Wu, Yonghong [2 ]
机构
[1] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Peoples R China
[2] Curtin Univ, Dept Math & Stat, GPO Box U 1987, Perth, WA 6845, Australia
基金
中国国家自然科学基金;
关键词
Elliptic equations; Schrodinger-Poisson; Positive solution; SCHRODINGER-POISSON SYSTEM; POSITIVE SOLUTIONS; BOUND-STATES; MAXWELL;
D O I
10.1016/j.aml.2024.109070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following nonlinear elliptic equations {-Delta u + u + lambda phi(x)vertical bar u vertical bar(r-2) u = vertical bar u vertical bar(p-1) u, x is an element of Omega, -Delta phi(x) =vertical bar u vertical bar(q), x is an element of Omega, (P) phi(x) =u(x) = 0, x is an element of partial derivative Omega, where p, q, r >1, lambda is a parameter and Omega subset of R-3 is a bounded domain. For q = r = 2, the equations reduce to the Schrodinger-Poisson equations. Without the need of imposing constraint that q must be equal to r, we establish a priori estimates, the nonexistence and existence of solutions for problem (P). Our results extend previous work for the case q = r to more general case.
引用
收藏
页数:6
相关论文
共 22 条
[1]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[2]   On Schrodinger-Poisson Systems [J].
Ambrosetti, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :257-274
[3]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[4]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[5]   GENERALIZED SCHRODINGER-POISSON TYPE SYSTEMS [J].
Azzollini, Antonio ;
d'Avenia, Pietro ;
Luisi, Valeria .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (02) :867-879
[6]   On the planar Schrodinger-Poisson system with the axially symmetric potential [J].
Chen, Sitong ;
Tang, Xianhua .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (03) :945-976
[7]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906
[8]  
DEFIGUEIREDO DG, 1982, J MATH PURE APPL, V61, P41
[9]  
Gilbarg David, 2001, Classics in Mathematics
[10]   POSITIVE SOLUTIONS FOR SCHRODINGER-POISSON-SLATER SYSTEM WITH COERCIVE POTENTIAL [J].
Jiang, Yongsheng ;
Wang, Zhengping ;
Zhou, Huan-Song .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 57 (02) :427-439