On Some Sums Involving Small Arithmetic Functions

被引:0
作者
Zhai, Wen Guang [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Small arithmetic function; exponential sum; asymptotic formula; AVERAGE NUMBER; EXPONENTIAL-SUMS;
D O I
10.1007/s10114-024-2129-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f be any arithmetic function and define Sf(x):=& sum;n <= xf([x/n])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S_{f}}(x):=\sum\nolimits_{{n \le x}}f([x/n])$$\end{document}. If the function f is small, namely, f(n) << n epsilon, then the error term Ef(x) in the asymptotic formula of Sf(x) has the form O(x1/2+epsilon). In this paper, we shall study the mean square of Ef(x) and establish some new results of Ef(x) for some special functions.
引用
收藏
页码:2497 / 2518
页数:22
相关论文
共 50 条
  • [41] A hybrid mean value involving Cochrane sums and a new sum analogous to Kloosterman sums*
    Wenpeng Zhang
    Lithuanian Mathematical Journal, 2016, 56 : 127 - 132
  • [42] On some congruences and exponential sums
    Garaev, Moubariz Z.
    Shparlinski, Igor E.
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 98
  • [43] Estimations on some hybrid exponential sums related to Kloosterman sums
    Cheng, Yingjie
    Cao, Xiwang
    Qian, Liqin
    Wan, Jinlong
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (02) : 797 - 819
  • [44] Some remarks on trigonometric sums
    Indlekofer, K. -H.
    Katai, I.
    ACTA MATHEMATICA HUNGARICA, 2008, 118 (04) : 313 - 318
  • [45] Mean value of some exponential sums and applications to Kloosterman sums
    Liu, Huaning
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (01) : 205 - 223
  • [46] Double exponential sums with exponential functions
    Shparlinski, Igor E.
    Yau, Kam Hung
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (10) : 2531 - 2543
  • [47] Some remarks on trigonometric sums
    K. -H. Indlekofer
    I. Kátai
    Acta Mathematica Hungarica, 2008, 118 : 313 - 318
  • [48] A hybrid mean value involving hyper-Kloosterman sums and mth Cochrane sum
    Wang, Jiankang
    Xu, Zhefeng
    LITHUANIAN MATHEMATICAL JOURNAL, 2024, 64 (02) : 190 - 198
  • [49] On approximation of periodic functions by Riesz sums
    Dodonov N.Y.
    Zhuk V.V.
    Journal of Mathematical Sciences, 2010, 166 (2) : 134 - 144
  • [50] On exponential sums involving Fourier coefficients of cusp forms
    Liu, Kui
    Ren, Xiumin
    JOURNAL OF NUMBER THEORY, 2012, 132 (01) : 171 - 181