On Some Sums Involving Small Arithmetic Functions

被引:0
作者
Zhai, Wen Guang [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Small arithmetic function; exponential sum; asymptotic formula; AVERAGE NUMBER; EXPONENTIAL-SUMS;
D O I
10.1007/s10114-024-2129-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f be any arithmetic function and define Sf(x):=& sum;n <= xf([x/n])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S_{f}}(x):=\sum\nolimits_{{n \le x}}f([x/n])$$\end{document}. If the function f is small, namely, f(n) << n epsilon, then the error term Ef(x) in the asymptotic formula of Sf(x) has the form O(x1/2+epsilon). In this paper, we shall study the mean square of Ef(x) and establish some new results of Ef(x) for some special functions.
引用
收藏
页码:2497 / 2518
页数:22
相关论文
共 50 条
  • [1] On a sum involving small arithmetic functions
    Zhai, Wenguang
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (09) : 2029 - 2052
  • [2] On some exponential sums involving Maass forms over arithmetic progressions
    Yan, Xiaofei
    JOURNAL OF NUMBER THEORY, 2016, 160 : 44 - 59
  • [3] On Certain Sums of Arithmetic Functions Involving the GCD and LCM of Two Positive Integers
    Heyman, Randell
    Toth, Laszlo
    RESULTS IN MATHEMATICS, 2021, 76 (01)
  • [4] On Certain Sums of Arithmetic Functions Involving the GCD and LCM of Two Positive Integers
    Randell Heyman
    László Tóth
    Results in Mathematics, 2021, 76
  • [5] SUMS OF ALGEBRAIC TRACE FUNCTIONS TWISTED BY ARITHMETIC FUNCTIONS
    Korolev, Maxim
    Shparlinski, Igor
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 304 (02) : 505 - 522
  • [6] Exponential sums and arithmetic functions at polynomial values
    De Koninck, Jean-Marie
    Katai, Imre
    LITHUANIAN MATHEMATICAL JOURNAL, 2012, 52 (02) : 138 - 144
  • [7] Exponential sums and arithmetic functions at polynomial values
    Jean-Marie De Koninck
    Imre Kátai
    Lithuanian Mathematical Journal, 2012, 52 : 138 - 144
  • [8] Generalized Alternating Sums of Multiplicative Arithmetic Functions
    Zurita, Rimer
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (10)
  • [9] Exponential sums involving the divisor function over arithmetic progressions
    Zhang, Rui
    Li, Yang
    Yan, Xiaofei
    AIMS MATHEMATICS, 2023, 8 (05): : 11084 - 11094
  • [10] On some sums involving the integral part function
    Liu, Kui
    Wu, Jie
    Yang, Zhishan
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (03) : 831 - 847