INGARCH-based fuzzy clustering of count time series with a football application

被引:9
作者
Cerqueti, Roy [1 ,2 ,3 ]
D'Urso, Pierpaolo [1 ]
De Giovanni, Livia [4 ]
Mattera, Raffaele [1 ]
Vitale, Vincenzina [1 ]
机构
[1] Sapienza Univ Rome, Dept Social & Econ Sci, Rome, Italy
[2] London South Bank Univ, Sch Business, London, England
[3] Univ Angers, GRANEM, Angers, France
[4] LUISS Guido Carli, Dept Polit Sci, Rome, Italy
来源
MACHINE LEARNING WITH APPLICATIONS | 2022年 / 10卷
关键词
Fuzzy C-medoids; INGARCH; Poisson distribution; Sport analytics; BIVARIATE POISSON MODEL;
D O I
10.1016/j.mlwa.2022.100417
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although there are many contributions in the time series clustering literature, few studies still deal with count time series data. This paper aims to develop a fuzzy clustering procedure for count time series data. We propose an Integer GARCH-based Fuzzy C -medoids (INGARCH-FCMd) method for clustering count time series based on a Mahalanobis distance between the parameters estimated by an INGARCH model. We show how the proposed clustering method works by clustering football teams according to the number of scored goals.
引用
收藏
页数:11
相关论文
共 55 条
[1]   A Poisson Autoregressive Model to Understand COVID-19 Contagion Dynamics [J].
Agosto, Arianna ;
Giudici, Paolo .
RISKS, 2020, 8 (03) :1-8
[2]   Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX) [J].
Agosto, Arianna ;
Cavaliere, Giuseppe ;
Kristensen, Dennis ;
Rahbek, Anders .
JOURNAL OF EMPIRICAL FINANCE, 2016, 38 :640-663
[3]   Forecasting transaction counts with integer-valued GARCH models [J].
Aknouche, Abdelhakim ;
Almohaimeed, Bader S. ;
Dimitrakopoulos, Stefanos .
STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2022, 26 (04) :529-539
[4]   PARX model for football match predictions [J].
Angelini, Giovanni ;
De Angelis, Luca .
JOURNAL OF FORECASTING, 2017, 36 (07) :795-807
[5]   An extensive comparative study of cluster validity indices [J].
Arbelaitz, Olatz ;
Gurrutxaga, Ibai ;
Muguerza, Javier ;
Perez, Jesus M. ;
Perona, Inigo .
PATTERN RECOGNITION, 2013, 46 (01) :243-256
[6]   A novel machine learning method for estimating football players' value in the transfer market [J].
Behravan, Iman ;
Razavi, Seyed Mohammad .
SOFT COMPUTING, 2021, 25 (03) :2499-2511
[7]  
Berndt DJ, 1994, P 3 INT C KNOWL DISC, P359
[8]   GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY [J].
BOLLERSLEV, T .
JOURNAL OF ECONOMETRICS, 1986, 31 (03) :307-327
[9]   A periodogram-based metric for time series classification [J].
Caiado, Jorge ;
Crato, Nuno ;
Pena, Daniel .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (10) :2668-2684
[10]   A fragmented-periodogram approach for clustering big data time series [J].
Caiado, Jorge ;
Crato, Nuno ;
Poncela, Pilar .
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2020, 14 (01) :117-146