Efficient strain-gradient mixed elements using shared degrees of freedom for the discretised fields

被引:1
作者
Papanicolopulos, Stefanos-Aldo [1 ]
机构
[1] Univ Edinburgh, Inst Infrastruct & Environm, Sch Engn, Kings Bldg, Edinburgh EH9 3FG, Scotland
关键词
finite elements; mixed formulation; shared degrees of freedom; strain-gradient; FINITE-ELEMENT; ELASTICITY; FORMULATION;
D O I
10.1002/nme.7536
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A displacement-only finite-element formulation of strain-gradient models requires elements with C1$$ {C}<^>1 $$ continuous interpolation. Mixed formulations have been proposed to allow the use of more common C0$$ {C}<^>0 $$ element shape functions. These mixed formulations are based on the interpolation of two different fields, displacement and some kind of displacement gradient, with the relation between the two fields enforced using either Lagrange multipliers or penalty methods. All elements proposed in the literature for such formulations use a distinct set of degrees of freedom to discretise each field. In this work, we introduce for the first time shared degrees of freedom, that lead to a mixed formulation with a significantly better numerical performance. We describe how this novel mixed formulation can be derived, present individual elements implementing this, and discuss the significance of the results.
引用
收藏
页数:11
相关论文
共 29 条
[11]  
Mindlin R.D., 1968, INT J SOLIDS STRUCT, V4, P109, DOI [DOI 10.1016/0020-7683(68)90036-X, 10.1016/0020-7683(68)90036-X]
[12]   MICRO-STRUCTURE IN LINEAR ELASTICITY [J].
MINDLIN, RD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (01) :51-78
[13]   Numerical solution of crack problems in gradient elasticity [J].
Papanicolopulos, S. -A. ;
Zervos, A. .
PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-ENGINEERING AND COMPUTATIONAL MECHANICS, 2010, 163 (02) :73-82
[14]   Chirality in isotropic linear gradient elasticity [J].
Papanicolopulos, S. -A. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (05) :745-752
[15]   A three-dimensional C1 finite element for gradient elasticity [J].
Papanicolopulos, S. -A. ;
Zervos, A. ;
Vardoulakis, I. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 77 (10) :1396-1415
[16]   A novel efficient mixed formulation for strain-gradient models [J].
Papanicolopulos, Stefanos-Aldo ;
Gulib, Fahad ;
Marinelli, Aikaterini .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 117 (08) :926-937
[17]   Discretization of Gradient Elasticity Problems Using C1 Finite Elements [J].
Papanicolopulos, Stefanos-Aldo ;
Zervos, A. ;
Vardoulakis, Ioannis .
MECHANICS OF GENERALIZED CONTINU A: ONE HUNDRED YEARS AFTER THE COSSERATS, 2010, 21 :269-+
[18]  
Shu JY, 1999, INT J NUMER METH ENG, V44, P373, DOI 10.1002/(SICI)1097-0207(19990130)44:3<373::AID-NME508>3.0.CO
[19]  
2-7
[20]   Using a penalty term to deal with spurious oscillations in second gradient finite elements [J].
Soufflet, Marc ;
Jouan, Gwendal ;
Kotronis, Panagiotis ;
Collin, Frederic .
INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2019, 28 (03) :346-366