Regularity for a class of integral functionals

被引:0
作者
Li, Shuoyang [1 ]
Gao, Meng [1 ]
Gao, Hongya [1 ]
机构
[1] Hebei Univ, Coll Math & Informat Sci, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
minimizer; regularity; splitting structure; variational integral;
D O I
10.1002/mana.202300138
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with regularity properties for variational integrals with the splitting structure of the form J(u,Omega)=integral Omega & sum;i=1n+1fi(x,Dui)+gi(x,(adjnDu)i)dx,$$\begin{equation*} \hspace*{59pt}{\cal J} (u,\Omega) = \int _{\Omega } \sum _{i=1}<^>{n+1} {\left\lbrace f<^>{i}(x,Du<^>{i})+ g<^>{i}(x,({\rm adj} _{n}Du)<^>{i}) \right\rbrace} dx, \end{equation*}$$where u=(u1,u2,& mldr;,un+1):Omega subset of Rn -> Rn+1$u=(u<^>1,u<^>2, \ldots, u<^>{n+1}):\Omega \subset \mathbb {R}<^>n \rightarrow \mathbb {R}<^>{n+1}$, adjnDu is an element of Rn+1${\rm adj}_n Du \in \mathbb {R}<^>{n+1}$ is the adjugate matrix of order n$n$, and fi:Omega xRn -> R$f<^>i:\Omega \times \mathbb {R}<^>{n} \rightarrow \mathbb {R}$, gi:Omega xR -> R$g<^>i:\Omega \times \mathbb {R} \rightarrow \mathbb {R}$, i=1,2,& mldr;,n+1$i=1,2, \ldots, n+1$, are Carath & eacute;odory functions satisfying suitable structural conditions. Local integrability, local boundedness, and local H & ouml;lder continuity for local minimizers are derived.
引用
收藏
页码:3410 / 3422
页数:13
相关论文
共 20 条
[1]  
[Anonymous], 1957, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat.
[2]   A Boundedness Result for Minimizers of Some Polyconvex Integrals [J].
Carozza, Menita ;
Gao, Hongya ;
Giova, Raffaella ;
Leonetti, Francesco .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (03) :699-725
[3]   Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: A unified approach via fractional De Giorgi classes [J].
Cozzi, Matteo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (11) :4762-4837
[4]   Local boundedness for solutions of a class of nonlinear elliptic systems [J].
Cupini, Giovanni ;
Leonetti, Francesco ;
Mascolo, Elvira .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)
[5]   Local Boundedness for Minimizers of Some Polyconvex Integrals [J].
Cupini, Giovanni ;
Leonetti, Francesco ;
Mascolo, Elvira .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (01) :269-289
[6]  
Dacorogna B., 2008, Direct Methods in the Calculus of Variations
[7]   Local behavior of fractional p-minimizers [J].
Di Castro, Agnese ;
Kuusi, Tuomo ;
Palatucci, Giampiero .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (05) :1279-1299
[8]  
DiBenedetto E., 1995, Partial differential equations
[9]   Higher integrability of minimizing Young measures [J].
Dolzmann, G ;
Kristensen, J .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 22 (03) :283-301
[10]  
Fuchs M., 1994, Asymptotic Analysis, V9, P23