Innovative therapeutic strategies to overcome radioresistance in breast cancer

被引:2
作者
Arnold, Christoph Reinhold [1 ]
Mangesius, Julian [2 ]
Portnaia, Iana [3 ]
Ganswindt, Ute [2 ]
Wolff, Hendrik Andreas [1 ]
机构
[1] Radiol Munich, Dept Radiol Nucl Med & Radiotherapy, Munich, Germany
[2] Med Univ Innsbruck, Dept Radiat Oncol, Innsbruck, Austria
[3] Med Univ Innsbruck, Dept Internal Med 2, Innsbruck, Austria
关键词
radioresistance; breast cancer; lncRNA; miRNA; hyperthermia; nanoparticles; radioimmunotherapy; radiotherapy; GOLD NANOPARTICLES ENHANCE; LONG NONCODING RNAS; ZIPPER KINASE MELK; RADIATION-THERAPY; PRELIMINARY EFFICACY; DOSE-ESCALATION; MARKER LESION; PHASE; 1/2A; RADIOTHERAPY; HYPERTHERMIA;
D O I
10.3389/fonc.2024.1379986
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Despite a comparatively favorable prognosis relative to other malignancies, breast cancer continues to significantly impact women's health globally, partly due to its high incidence rate. A critical factor in treatment failure is radiation resistance - the capacity of tumor cells to withstand high doses of ionizing radiation. Advancements in understanding the cellular and molecular mechanisms underlying radioresistance, coupled with enhanced characterization of radioresistant cell clones, are paving the way for the development of novel treatment modalities that hold potential for future clinical application. In the context of combating radioresistance in breast cancer, potential targets of interest include long non-coding RNAs (lncRNAs), micro RNAs (miRNAs), and their associated signaling pathways, along with other signal transduction routes amenable to pharmacological intervention. Furthermore, technical, and methodological innovations, such as the integration of hyperthermia or nanoparticles with radiotherapy, have the potential to enhance treatment responses in patients with radioresistant breast cancer. This review endeavors to provide a comprehensive survey of the current scientific landscape, focusing on novel therapeutic advancements specifically addressing radioresistant breast cancer.
引用
收藏
页数:16
相关论文
共 149 条
[1]   Hyperthermia and protein homeostasis: Cytoprotection and cell death [J].
Ahmed, Kanwal ;
Zaidi, Syed Faisal ;
Mati-ur-Rehman ;
Rehman, Rafey ;
Kondo, Takashi .
JOURNAL OF THERMAL BIOLOGY, 2020, 91
[2]   NF-κB Regulates Radioresistance Mediated By β1-Integrin in Three-Dimensional Culture of Breast Cancer Cells [J].
Ahmed, Kazi Mokim ;
Zhang, Hui ;
Park, Catherine C. .
CANCER RESEARCH, 2013, 73 (12) :3737-3748
[3]   Non-Coding RNAs Associated With Radioresistance in Triple-Negative Breast Cancer [J].
Aranza-Martinez, Alberto ;
Sanchez-Perez, Julio ;
Brito-Elias, Luis ;
Lopez-Camarillo, Cesar ;
Cantu de Leon, David ;
Perez-Plasencia, Carlos ;
Lopez-Urrutia, Eduardo .
FRONTIERS IN ONCOLOGY, 2021, 11
[4]   Therapeutic Targeting of Long Non-Coding RNAs in Cancer [J].
Arun, Gayatri ;
Diermeier, Sarah D. ;
Spector, David L. .
TRENDS IN MOLECULAR MEDICINE, 2018, 24 (03) :257-277
[5]   THOC2 and THOC5 Regulate Stemness and Radioresistance in Triple-Negative Breast Cancer [J].
Bai, Xupeng ;
Ni, Jie ;
Beretov, Julia ;
Wang, Shanping ;
Dong, Xingli ;
Graham, Peter ;
Li, Yong .
ADVANCED SCIENCE, 2021, 8 (24)
[6]   Activation of the eIF2α/ATF4 axis drives triple-negative breast cancer radioresistance by promoting glutathione biosynthesis [J].
Bai, Xupeng ;
Ni, Jie ;
Beretov, Julia ;
Wasinger, Valerie C. ;
Wang, Shanping ;
Zhu, Ying ;
Graham, Peter ;
Li, Yong .
REDOX BIOLOGY, 2021, 43
[7]   Temperature and thermal dose during radiotherapy and hyperthermia for recurrent breast cancer are related to clinical outcome and thermal toxicity: a systematic review [J].
Bakker, Akke ;
van der Zee, Jacoba ;
van Tienhoven, Geertjan ;
Kok, H. Petra ;
Rasch, Coen R. N. ;
Crezee, Hans .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2019, 36 (01) :1024-1039
[8]   Cardiovascular events associated with rofecoxib: final analysis of the APPROVe trial [J].
Baron, John A. ;
Sandler, Robert S. ;
Bresalier, Robert S. ;
Lanas, Angel ;
Morton, Dion G. ;
Riddell, Robert ;
Iverson, Erik R. ;
DeMets, David L. .
LANCET, 2008, 372 (9651) :1756-1764
[9]   Nanoparticles (NPs)-Meditated LncRNA AFAP1-AS1 Silencing to Block Wnt/β-Catenin Signaling Pathway for Synergistic Reversal of Radioresistance and Effective Cancer Radiotherapy [J].
Bi, Zhuofei ;
Li, Qingjian ;
Dinglin, Xiaoxiao ;
Xu, Ying ;
You, Kaiyun ;
Hong, Huangming ;
Hu, Qian ;
Zhang, Wei ;
Li, Chenchen ;
Tan, Yujie ;
Xie, Ning ;
Ren, Wei ;
Li, Chuping ;
Liu, Yimin ;
Hu, Hai ;
Xu, Xiaoding ;
Yao, Herui .
ADVANCED SCIENCE, 2020, 7 (18)
[10]   NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act. In. Sarc): a multicentre, phase 2-3, randomised, controlled trial [J].
Bonvalot, Sylvie ;
Rutkowski, Piotr L. ;
Thariat, Juliette ;
Carrere, Sebastien ;
Ducassou, Anne ;
Sunyach, Marie-Pierre ;
Agoston, Peter ;
Hong, Angela ;
Mervoyer, Augustin ;
Rastrelli, Marco ;
Moreno, Victor ;
Li, Rub K. ;
Tiangco, Beatrice ;
Herraez, Antonio Casado ;
Gronchi, Alessandro ;
Mangel, Laszlo ;
Sy-Ortin, Teresa ;
Hohenberger, Peter ;
de Baere, Thierry ;
Le Cesne, Axel ;
Helfre, Sylvie ;
Saada-Bouzid, Esma ;
Borkowska, Aneta ;
Anghel, Rodica ;
Co, Ann ;
Gebhart, Michael ;
Kantor, Guy ;
Montero, Angel ;
Loong, Herbert H. ;
Verges, Ramona ;
Lapeire, Lore ;
Dema, Sorin ;
Kacso, Gabriel ;
Austen, Lyn ;
Moureau-Zabotto, Laurence ;
Servois, Vincent ;
Wardelmann, Eva ;
Terrier, Philippe ;
Lazar, Alexander J. ;
Bovee, Judith V. M. G. ;
Le Pechoux, Cecile ;
Papi, Zsusanna .
LANCET ONCOLOGY, 2019, 20 (08) :1148-1159