Maximum bound principle preserving and mass conservative projection method for the conservative Allen-Cahn equation

被引:0
作者
Li, Jiayin [1 ,2 ]
Li, Jingwei [3 ]
Tong, Fenghua [4 ,5 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Peking Univ, Chongqing Res Inst Big Data, Chongqing 400000, Peoples R China
[3] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[4] Beijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[5] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国博士后科学基金;
关键词
Conservative Allen-Cahn equation; MBP; Mass conservation; Projection method;
D O I
10.1016/j.aml.2024.109151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose and analyze an efficient maximum bound principle (MBP) preserving and mass conservative projection method for the conservative Allen-Cahn equation. The proposed projection operator can be proven contractive in the discrete L-2 norm. Discrete MBP and mass conservation are rigorously presented for a second-order exponential time differencing scheme with a central difference discretization in space. Various numerical examples are performed to verify these theoretical results and demonstrate the accuracy and robustness of the proposed scheme.
引用
收藏
页数:5
相关论文
共 11 条
[1]   A NEW LAGRANGE MULTIPLIER APPROACH FOR CONSTRUCTING STRUCTURE PRESERVING SCHEMES, II. BOUND PRESERVING [J].
Cheng, Qing ;
Shen, Jie .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (03) :970-998
[2]  
Fu ZH, 2024, Arxiv, DOI arXiv:2402.15142
[3]   Energy-decreasing exponential time differencing Runge-Kutta methods for phase-field models [J].
Fu, Zhaohui ;
Yang, Jiang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 454
[4]   A High-Order and Unconditionally Energy Stable Scheme for the Conservative Allen-Cahn Equation with a Nonlocal Lagrange Multiplier [J].
Lee, Hyun Geun ;
Shin, Jaemin ;
Lee, June-Yub .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
[5]   ARBITRARILY HIGH-ORDER EXPONENTIAL CUT-OFF METHODS FOR PRESERVING MAXIMUM PRINCIPLE OF PARABOLIC EQUATIONS [J].
Li, Buyang ;
Yang, Jiang ;
Zhou, Zhi .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06) :A3957-A3978
[6]   Unconditionally Maximum Bound Principle Preserving Linear Schemes for the Conservative Allen-Cahn Equation with Nonlocal Constraint [J].
Li, Jingwei ;
Ju, Lili ;
Cai, Yongyong ;
Feng, Xinlong .
JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (03)
[7]  
Liu X., 2024, Numer. Algorithms, V97, P1, DOI [10.1007/s11075-023-01502-9, DOI 10.1007/S11075-023-01502-9]
[8]  
Maset S, 2009, MATH COMPUT, V78, P957, DOI 10.1090/S0025-5718-08-02171-6
[9]   NONLOCAL REACTION DIFFUSION-EQUATIONS AND NUCLEATION [J].
RUBINSTEIN, J ;
STERNBERG, P .
IMA JOURNAL OF APPLIED MATHEMATICS, 1992, 48 (03) :249-264
[10]  
Tong F., 2024, arXiv