STSD:A large-scale benchmark for semantic segmentation of subway tunnel point cloud

被引:10
作者
Cui, Hao [1 ,2 ]
Li, Jian [1 ,2 ]
Mao, Qingzhou [3 ]
Hu, Qingwu [3 ]
Dong, Cuijun [3 ]
Tao, Yiwen [4 ]
机构
[1] Zhengzhou Univ, Sch Geosci & Technol, Zhengzhou, Peoples R China
[2] Zhengzhou Univ, Archaeol Innovat Ctr, Zhengzhou, Peoples R China
[3] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Peoples R China
[4] Zhengzhou Univ, Sch Math & Stat, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Subway tunnel; Semantic segmentation; Deep learning dataset; Point cloud; Mobile laser scanning; IMAGE; DEFECTS;
D O I
10.1016/j.tust.2024.105829
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Deep learning (DL) semantic segmentation of tunnel point cloud shows an efficient path for applications related to subway tunnel scenes, such as health inspection and building information modelling (BIM). Current methods for tunnel point cloud segmentation often suffer from a shortage of benchmarks. This paper proposed a largescale, multi-modal dataset for semantic segmentation of subway tunnel point cloud called subway tunnel segmentation dataset (STSD). The STSD comprises point clouds and projected images annotated into 12 categories, encompassing three types of subway tunnels with a combined length exceeding 2700 m, totaling over 2.26 billion points. A novel approach for DL semantic segmentation of subway tunnel point clouds is proposed herein. This approach enables the direct utilization of image-based DL segmentation networks on subway tunnel point clouds. Furthermore, it incorporates a lossless coordinate transformation method capable of converting tunnel point clouds of any cross-section shape into images with minimal information loss. Further evaluation of several classic or state-of-the-art 2D and 3D DL semantic segmentation models shows the feasibility of the approach and dataset. The best 2D model achieves a mIoU of 86.26% and outperforms the best 3D model by almost 10%. This research provides a novel approach for DL semantic segmentation in subway tunnel point clouds, contributes a large-scale, multi-modal dataset for the tunnel semantic segmentation, and creates a benchmark for further evaluation of the corresponding algorithms.
引用
收藏
页数:13
相关论文
共 52 条
[1]   Measurement planning for circular cross-section tunnels using terrestrial laser scanning [J].
Arguelles-Fraga, Ramon ;
Ordonez, Celestino ;
Garcia-Cortes, Silverio ;
Roca-Pardinas, Javier .
AUTOMATION IN CONSTRUCTION, 2013, 31 :1-9
[2]   3D Semantic Parsing of Large-Scale Indoor Spaces [J].
Armeni, Iro ;
Sener, Ozan ;
Zamir, Amir R. ;
Jiang, Helen ;
Brilakis, Ioannis ;
Fischer, Martin ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1534-1543
[3]   Tunnel inspection using photogrammetric techniques and image processing: A review [J].
Attard, Leanne ;
Debono, Carl James ;
Valentino, Gianluca ;
Di Castro, Mario .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 144 :180-188
[4]   Image-Based Detection of Structural Defects Using Hierarchical Multi-scale Attention [J].
Benz, Christian ;
Rodehorst, Volker .
PATTERN RECOGNITION, DAGM GCPR 2022, 2022, 13485 :337-353
[5]   Tunnel Reconstruction With Block Level Precision by Combining Data-Driven Segmentation and Model-Driven Assembly [J].
Cao, Zhen ;
Chen, Dong ;
Peethambaran, Jiju ;
Zhang, Zhenxin ;
Xia, Shaobo ;
Zhang, Liqiang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (10) :8853-8872
[6]   A Flexible Architecture for Extracting Metro Tunnel Cross Sections from Terrestrial Laser Scanning Point Clouds [J].
Cao, Zhen ;
Chen, Dong ;
Shi, Yufeng ;
Zhang, Zhenxin ;
Jin, Fengxiang ;
Yun, Ting ;
Xu, Sheng ;
Kang, Zhizhong ;
Zhang, Liqiang .
REMOTE SENSING, 2019, 11 (03)
[7]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[8]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[9]   Shield subway tunnel deformation detection based on mobile laser scanning [J].
Cui, Hao ;
Ren, Xiaochun ;
Mao, Qingzhou ;
Hu, Qingwu ;
Wang, Wei .
AUTOMATION IN CONSTRUCTION, 2019, 106
[10]   ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes [J].
Dai, Angela ;
Chang, Angel X. ;
Savva, Manolis ;
Halber, Maciej ;
Funkhouser, Thomas ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2432-2443