Learning a quantum channel from its steady-state

被引:3
作者
Ilin, Yigal [1 ]
Arad, Itai [2 ,3 ,4 ]
机构
[1] Technion Israel Inst Technol, Andrew & Erna Viterbi Dept Elect & Comp Engn, IL-3200003 Haifa, Israel
[2] Technion Israel Inst Technol, Phys Dept, IL-3200003 Haifa, Israel
[3] Technion Israel Inst Technol, Helen Diller Quantum Ctr, IL-3200003 Haifa, Israel
[4] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
基金
新加坡国家研究基金会; 以色列科学基金会;
关键词
quantum information; quantum channels; quantum device characterization; noise characterization; quantum benchmarking; dissipative quantum dynamics; DRIVEN;
D O I
10.1088/1367-2630/ad5464
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a scalable method for learning local quantum channels using local expectation values measured on a single state-their steady state. Our method is inspired by the algorithms for learning local Hamiltonians from their ground states. For it to succeed, the steady state must be non-trivial, and therefore the channel needs to be non-unital. Such non-unital channels are readily implementable on present day quantum computers using mid-circuit measurements or RESET gates. We demonstrate that the full structure of such channels is encoded in their steady states, and can be learned efficiently using only the expectation values of local observables on these states. We emphasize two immediate applications to illustrate our approach: (i) Using engineered dissipative dynamics, we offer a straightforward way to assess the accuracy of a given noise model in a regime where all qubits are actively utilized for a significant duration. (ii) Given a parameterized noise model for the entire system, our method can learn its underlying parameters. We demonstrate both applications using numerical simulations and experimental trials conducted on an IBMQ machine.
引用
收藏
页数:27
相关论文
共 62 条
[21]   Method to identify parent Hamiltonians for trial states [J].
Greiter, Martin ;
Schnells, Vera ;
Thomale, Ronny .
PHYSICAL REVIEW B, 2018, 98 (08)
[22]  
Haah J, 2023, Arxiv, DOI arXiv:2108.04842
[23]   Capturing non-Markovian dynamics on near-term quantum computers [J].
Head-Marsden, Kade ;
Krastanov, Stefan ;
Mazziotti, David A. ;
Narang, Prineha .
PHYSICAL REVIEW RESEARCH, 2021, 3 (01)
[24]  
Evans TJ, 2019, Arxiv, DOI arXiv:1912.07636
[25]  
James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI [10.1007/978-1-4614-7138-7, 10.1007/978-1-4614-7138-7_1]
[26]  
Javadi-Abhari A, 2024, Arxiv, DOI [arXiv:2405.08810, DOI 10.48550/ARXIV.2405.08810]
[27]   Demonstration of quantum volume 64 on a superconducting quantum computing system [J].
Jurcevic, Petar ;
Javadi-Abhari, Ali ;
Bishop, Lev S. ;
Lauer, Isaac ;
Bogorin, Daniela F. ;
Brink, Markus ;
Capelluto, Lauren ;
Gunluk, Oktay ;
Itoko, Toshinari ;
Kanazawa, Naoki ;
Kandala, Abhinav ;
Keefe, George A. ;
Krsulich, Kevin ;
Landers, William ;
Lewandowski, Eric P. ;
McClure, Douglas T. ;
Nannicini, Giacomo ;
Narasgond, Adinath ;
Nayfeh, Hasan M. ;
Pritchett, Emily ;
Rothwell, Mary Beth ;
Srinivasan, Srikanth ;
Sundaresan, Neereja ;
Wang, Cindy ;
Wei, Ken X. ;
Wood, Christopher J. ;
Yau, Jeng-Bang ;
Zhang, Eric J. ;
Dial, Oliver E. ;
Chow, Jerry M. ;
Gambetta, Jay M. .
QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (02)
[28]   Demonstration of a High-Fidelity CNOT Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression [J].
Kandala, A. ;
Wei, K. X. ;
Srinivasan, S. ;
Magesan, E. ;
Carnevale, S. ;
Keefe, G. A. ;
Klaus, D. ;
Dial, O. ;
McKay, D. C. .
PHYSICAL REVIEW LETTERS, 2021, 127 (13)
[29]   Learning quantum models from quantum or classical data [J].
Kappen, H. J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (21)
[30]  
Kim D, 2015, NAT NANOTECHNOL, V10, P243, DOI [10.1038/NNANO.2014.336, 10.1038/nnano.2014.336]