Learning a quantum channel from its steady-state

被引:3
作者
Ilin, Yigal [1 ]
Arad, Itai [2 ,3 ,4 ]
机构
[1] Technion Israel Inst Technol, Andrew & Erna Viterbi Dept Elect & Comp Engn, IL-3200003 Haifa, Israel
[2] Technion Israel Inst Technol, Phys Dept, IL-3200003 Haifa, Israel
[3] Technion Israel Inst Technol, Helen Diller Quantum Ctr, IL-3200003 Haifa, Israel
[4] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
基金
新加坡国家研究基金会; 以色列科学基金会;
关键词
quantum information; quantum channels; quantum device characterization; noise characterization; quantum benchmarking; dissipative quantum dynamics; DRIVEN;
D O I
10.1088/1367-2630/ad5464
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a scalable method for learning local quantum channels using local expectation values measured on a single state-their steady state. Our method is inspired by the algorithms for learning local Hamiltonians from their ground states. For it to succeed, the steady state must be non-trivial, and therefore the channel needs to be non-unital. Such non-unital channels are readily implementable on present day quantum computers using mid-circuit measurements or RESET gates. We demonstrate that the full structure of such channels is encoded in their steady states, and can be learned efficiently using only the expectation values of local observables on these states. We emphasize two immediate applications to illustrate our approach: (i) Using engineered dissipative dynamics, we offer a straightforward way to assess the accuracy of a given noise model in a regime where all qubits are actively utilized for a significant duration. (ii) Given a parameterized noise model for the entire system, our method can learn its underlying parameters. We demonstrate both applications using numerical simulations and experimental trials conducted on an IBMQ machine.
引用
收藏
页数:27
相关论文
共 62 条
[1]  
Aharonov D, 2022, Arxiv, DOI arXiv:2211.03999
[2]  
[Anonymous], 2022, IBM Quantum
[3]   Sample-efficient learning of interacting quantum systems [J].
Anshu, Anurag ;
Arunachalam, Srinivasan ;
Kuwahara, Tomotaka ;
Soleimanifar, Mehdi .
NATURE PHYSICS, 2021, 17 (08) :931-+
[4]   Learning the dynamics of open quantum systems from their steady states [J].
Bairey, Eyal ;
Guo, Chu ;
Poletti, Dario ;
Lindner, Netanel H. ;
Arad, Itai .
NEW JOURNAL OF PHYSICS, 2020, 22 (03)
[5]   Learning a Local Hamiltonian from Local Measurements [J].
Bairey, Eyal ;
Arad, Itai ;
Lindner, Netanel H. .
PHYSICAL REVIEW LETTERS, 2019, 122 (02)
[6]  
Blume-Kohout R, 2013, Arxiv, DOI arXiv:1310.4492
[7]   Coupling strength estimation for spin chains despite restricted access [J].
Burgarth, Daniel ;
Maruyama, Koji ;
Nori, Franco .
PHYSICAL REVIEW A, 2009, 79 (02)
[8]   Approximate quantum error correction for generalized amplitude-damping errors [J].
Cafaro, Carlo ;
van Loock, Peter .
PHYSICAL REVIEW A, 2014, 89 (02)
[9]   Computational Inverse Method for Constructing Spaces of Quantum Models from Wave Functions [J].
Chertkov, Eli ;
Clark, Bryan K. .
PHYSICAL REVIEW X, 2018, 8 (03)
[10]   Randomized Benchmarking and Process Tomography for Gate Errors in a Solid-State Qubit [J].
Chow, J. M. ;
Gambetta, J. M. ;
Tornberg, L. ;
Koch, Jens ;
Bishop, Lev S. ;
Houck, A. A. ;
Johnson, B. R. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (09)