Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images

被引:1
作者
Xu, Xiaobin [1 ]
Teng, Cong [1 ,2 ]
Zhu, Hongchun [1 ]
Feng, Haikuan [2 ]
Zhao, Yu [2 ]
Li, Zhenhai [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Shandong, Peoples R China
[2] Beijing Acad Agr & Forestry Sci, Minist Agr & Rural Affairs, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Beijing 100097, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing; LEAF NITROGEN-CONTENT; VEGETATION INDEXES; CROP PHENOLOGY; GROWTH; PERFORMANCE; BIOMASS; LAI;
D O I
10.25165/j.ijabe.20241702.5869
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Predicting crop yield timely can considerably accelerate agricultural production management and food policymaking, which are also important requirements for precise agricultural development. Given the development of hyperspectral imaging technology, a simple and efficient modeling method is convenient for predicting crop yield by using airborne hyperspectral images. In this study, the Unmanned Aerial Vehicle (UAV) hyperspectral and maturity yield data in 2014-2015 and 2017-2018 were collected. The winter wheat yield prediction model was established by optimizing Vegetation Indices (VIs) feature scales and sample scales, incorporating Partial Least Squares Regression (PLSR), Random Forest algorithm (RF), and Back Propagation Neural Network algorithm (BPN). Results showed that PLSR stands out as the optimal wheat yield prediction model considering stability and accuracy (RMSE=948.88 kg/hm2). Contrary to the belief that more input features result in higher accuracy, PLSR, RF, and BPN models performed best when trained with the top 3, 8, and 4 VIs with the highest correlation, respectively. With an increase in training samples, model accuracy improves, reaching stability when the training samples reach 70. Using PLSR and optimal feature scales, UAV yield prediction maps were generated, holding significant value for field management in precision agriculture.
引用
收藏
页码:260 / 267
页数:8
相关论文
共 59 条
[1]   POTENTIALS AND LIMITS OF VEGETATION INDEXES FOR LAI AND APAR ASSESSMENT [J].
BARET, F ;
GUYOT, G .
REMOTE SENSING OF ENVIRONMENT, 1991, 35 (2-3) :161-173
[2]   A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data [J].
Becker-Reshef, I. ;
Vermote, E. ;
Lindeman, M. ;
Justice, C. .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (06) :1312-1323
[3]   Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging [J].
Bendig, Juliane ;
Bolten, Andreas ;
Bennertz, Simon ;
Broscheit, Janis ;
Eichfuss, Silas ;
Bareth, Georg .
REMOTE SENSING, 2014, 6 (11) :10395-10412
[4]   Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics [J].
Bolton, Douglas K. ;
Friedl, Mark A. .
AGRICULTURAL AND FOREST METEOROLOGY, 2013, 173 :74-84
[5]   LINKING PHYSICAL REMOTE-SENSING MODELS WITH CROP GROWTH SIMULATION-MODELS, APPLIED FOR SUGAR-BEET [J].
BOUMAN, BAM .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1992, 13 (14) :2565-2581
[6]  
[柴旭荣 Chai Xurong], 2013, [中国农业科学, Scientia Agricultura Sinica], V46, P4716
[7]  
Chen JingM., 1996, CAN J REMOTE SENS, V22, P229, DOI [DOI 10.1080/07038992.1996.10855178, 10.1080/07038992.1996.10855178]
[8]   New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat [J].
Chen, Pengfei ;
Haboudane, Driss ;
Tremblay, Nicolas ;
Wang, Jihua ;
Vigneault, Philippe ;
Li, Baoguo .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (09) :1987-1997
[9]   A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method [J].
Cho, MA ;
Skidmore, AK .
REMOTE SENSING OF ENVIRONMENT, 2006, 101 (02) :181-193
[10]  
Devereux S., 2001, Development Policy Review, V19, P507, DOI 10.1111/1467-7679.00148