Homogenizing Interfacial Temperature Distribution for High Performance Solid-State Lithium Metal Batteries

被引:3
|
作者
Jiang, Chonglai [1 ,2 ]
Lu, Haotian [1 ,2 ,3 ]
Yang, Jinlin [2 ]
Sun, Zejun [2 ]
Xiao, Yukun [1 ,2 ]
Niu, Yuxiang [2 ]
Xu, Hongfei [2 ]
Liu, Yuan [2 ]
Wang, Meng [1 ,2 ]
Yang, Haotian [1 ,2 ]
Cui, Baihua [1 ,2 ]
Long, Yu [1 ,2 ]
Chen, Ganwen [1 ,2 ]
Shan, Yi [4 ]
Yang, Quan-Hong [1 ,3 ]
Chen, Wei [1 ,2 ,5 ]
机构
[1] Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus Tianjin Univ, Binhai New City 350207, Fuzhou, Peoples R China
[2] Natl Univ Singapore, Dept Chem, Singapore 117549, Singapore
[3] Tianjin Univ, Sch Chem Engn & Technol, Tianjin Key Lab Adv Carbon & Electrochem Energy St, Tianjin 300072, Peoples R China
[4] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore
[5] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
来源
ACS ENERGY LETTERS | 2024年 / 9卷 / 06期
基金
新加坡国家研究基金会;
关键词
COMPOSITE ANODE; ELECTROLYTE; RESISTANCE; LAYER;
D O I
10.1021/acsenergylett.4c00964
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An intermediate layer ensuring good thermal dispersion and intimate interfacial contact between the lithium metal anode (LMA) and solid-state electrolyte (SSE) is essential for improving the interfacial stability and suppressing lithium dendrites, endowing solid-state lithium metal batteries with great potential for practical application. Herein, core-shell Cu@Ag nanowires (NWs) with good lithiophilic affinity and thermal conductivity are applied to stabilize the interface between LMA and garnet-type electrolyte. An intimate anodic interface can be achieved with an interfacial resistance of only 14.14 ohm cm(2). The lifetime of Li|Li symmetric cells with the Cu@Ag NWs can be prolonged to 1000 h at 0.5 mA cm(-2). The Li|LiFePO4 full cell delivers a long cycling lifetime over 350 cycles with 90% capacity retention at 1 C. Even with a high-voltage cathode LiNi0.8Co0.1Mn0.1O2, the full cells can still be stably cycled over 240 cycles at 0.5 C, demonstrating the promising potential for practical application.
引用
收藏
页码:2527 / 2535
页数:9
相关论文
共 50 条
  • [41] Protecting Lithium Metal Anodes in Solid-State Batteries
    Zhong, Yuxi
    Yang, Xiaoyu
    Guo, Ruiqi
    Zhai, Liqing
    Wang, Xinran
    Wu, Feng
    Wu, Chuan
    Bai, Ying
    ELECTROCHEMICAL ENERGY REVIEWS, 2024, 7 (01)
  • [42] Stable Cycling of Solid-State Lithium Metal Batteries at Room Temperature via Reducing Electrode/Electrolyte Interfacial Resistance
    Fangfang Liu
    Xiuyun Chuan
    Yang Yang
    Dubin Huang
    Xin He
    Journal of Materials Engineering and Performance, 2021, 30 : 4543 - 4551
  • [43] Stable Cycling of Solid-State Lithium Metal Batteries at Room Temperature via Reducing Electrode/Electrolyte Interfacial Resistance
    Liu, Fangfang
    Chuan, Xiuyun
    Yang, Yang
    Huang, Dubin
    He, Xin
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (06) : 4543 - 4551
  • [44] Mitigating the Interfacial Degradation in Cathodes for High-Performance Oxide-Based Solid-State Lithium Batteries
    Wang, Dawei
    Sun, Qian
    Luo, Jing
    Liang, Jianneng
    Sun, Yipeng
    Li, Ruying
    Adair, Keegan
    Zhang, Li
    Yang, Rong
    Lu, Shigang
    Huang, Huan
    Sun, Xueliang
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (05) : 4954 - 4961
  • [45] ZIF-8-functionalized polymer electrolyte with enhanced performance for high-temperature solid-state lithium metal batteries
    Jin-Fang Zhang
    Yuan-Yuan Wang
    Xiao-Feng Li
    Gen-Yan Zhang
    Ying Li
    Rong Liu
    Sheng-Liang Hu
    Tuo-Ping Hu
    Ruth Knibbe
    Qing-Bing Xia
    Rare Metals, 2024, 43 (03) : 984 - 994
  • [46] ZIF-8-functionalized polymer electrolyte with enhanced performance for high-temperature solid-state lithium metal batteries
    Jin-Fang Zhang
    Yuan-Yuan Wang
    Xiao-Feng Li
    Gen-Yan Zhang
    Ying Li
    Rong Liu
    Sheng-Liang Hu
    Tuo-Ping Hu
    Ruth Knibbe
    Qing-Bing Xia
    Rare Metals, 2024, 43 : 984 - 994
  • [47] ZIF-8-functionalized polymer electrolyte with enhanced performance for high-temperature solid-state lithium metal batteries
    Zhang, Jin-Fang
    Wang, Yuan-Yuan
    Li, Xiao-Feng
    Zhang, Gen-Yan
    Li, Ying
    Liu, Rong
    Hu, Sheng-Liang
    Hu, Tuo-Ping
    Knibbe, Ruth
    Xia, Qing-Bing
    RARE METALS, 2024, 43 (03) : 984 - 994
  • [48] High-performance lithium metal batteries based on composite solid-state electrolytes with high ceramic content
    Zhang, Xiaoyu
    Wang, Jinhuan
    Hu, Dongqi
    Du, Wei
    Hou, Chuanxin
    Jiang, Huiyu
    Wei, Yuting
    Liu, Xiao
    Jiang, Fuyi
    Sun, Jianchao
    Yuan, Hua
    Huang, Xiaoyu
    Energy Storage Materials, 2024, 65
  • [49] High-performance lithium metal batteries based on composite solid-state electrolytes with high ceramic content
    Zhang, Xiaoyu
    Wang, Jinhuan
    Hu, Dongqi
    Du, Wei
    Hou, Chuanxin
    Jiang, Huiyu
    Wei, Yuting
    Liu, Xiao
    Jiang, Fuyi
    Sun, Jianchao
    Yuan, Hua
    Huang, Xiaoyu
    ENERGY STORAGE MATERIALS, 2024, 65
  • [50] PEO-Based Solid-State Polymer Electrolytes for Wide-Temperature Solid-State Lithium Metal Batteries
    Song, Yunxuan
    Su, Meng
    Xiang, Hengying
    Kang, Junbao
    Yu, Wen
    Peng, Zhaozhao
    Wang, Hang
    Cheng, Bowen
    Deng, Nanping
    Kang, Weimin
    SMALL, 2025, 21 (03)