Numerical relativity multimodal waveforms using absorbing boundary conditions

被引:0
|
作者
Buchman, Luisa T. [1 ]
Duez, Matthew D. [1 ]
Morales, Marlo [1 ]
Scheel, Mark A. [2 ]
Kostersitz, Tim M. [3 ]
Evans, Andrew M. [4 ]
Mitman, Keefe [2 ]
机构
[1] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA
[2] CALTECH, Walter Burke Inst Theoret Phys, TAPIR, MC 350-17, Pasadena, CA 91125 USA
[3] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
[4] UC Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
关键词
numerical relativity; binary black holes; multimodal gravitational waves; absorbing boundary conditions; higher order boundary conditions; GENERAL-RELATIVITY; GRAVITATIONAL WAVES; EQUATIONS; EVOLUTION;
D O I
10.1088/1361-6382/ad65af
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Errors due to imperfect boundary conditions in numerical relativity simulations of binary black holes (BBHs) can produce unphysical reflections of gravitational waves which compromise the accuracy of waveform predictions, especially for subdominant modes. A system of higher order absorbing boundary conditions which greatly reduces this problem was introduced in earlier work (Buchman and Sarbach 2006 Class. Quantum Grav. 23 6709). In this paper, we devise two new implementations of this boundary condition system in the Spectral Einstein Code (SpEC), and test them in both linear multipolar gravitational wave and inspiralling mass ratio 7:1 BBH simulations. One of our implementations in particular is shown to be extremely robust and to produce accuracy superior to the standard freezing-Psi 0 boundary condition usually used by SpEC.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] ABSORBING BOUNDARY CONDITIONS FOR GRANULAR ACOUSTICS
    McNamara, Sean C.
    PARTICLE-BASED METHODS III: FUNDAMENTALS AND APPLICATIONS, 2013, : 80 - 90
  • [42] Absorbing boundary conditions for the Schrodinger equation
    Dept. of Comp. and Info. Science, Queen's University, Kingston, Ont. K7L 3N6, Canada
    不详
    Siam J. Sci. Comput., 1 (255-282):
  • [43] OPTIMAL ABSORBING BOUNDARY-CONDITIONS
    YEVICK, D
    YU, J
    YAYON, Y
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1995, 12 (01): : 107 - 110
  • [44] Absorbing boundary conditions in 3D elastic-wave numerical modeling
    Xia, F
    Dong, LG
    Ma, ZT
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2004, 47 (01): : 132 - +
  • [45] Numerical calculations of ARROW structures by pseudospectral approach with Mur's absorbing boundary conditions
    Huang, Chia-Chien
    OPTICS EXPRESS, 2006, 14 (24): : 11631 - 11652
  • [46] Exact Absorbing Boundary Conditions for Numerical Modeling of 3-D Diffraction Gratings
    Sirenko, Kostyantyn
    Sirenko, Yuriy
    Bagci, Hakan
    PROCEEDINGS OF 2013 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS), 2013, : 771 - 774
  • [47] Characterization of numerical relativity waveforms of eccentric binary black hole mergers
    Habib, Sarah
    Huerta, E. A.
    PHYSICAL REVIEW D, 2019, 100 (04)
  • [48] Numerical implementation of absorbing and injecting boundary conditions for the time-dependent Schroedinger equation
    Yalabik, M. C.
    Ecemis, M. I.
    P C Magazine: The Independent Guide to IBM - Standard Personal Computers, 1994, 13 (21):
  • [49] Where post-Newtonian and numerical-relativity waveforms meet
    Hannam, Mark
    Husa, Sascha
    Gonzalez, Jose A.
    Sperhake, Ulrich
    Bruegmann, Bernd
    PHYSICAL REVIEW D, 2008, 77 (04):
  • [50] Surrogate model of hybridized numerical relativity binary black hole waveforms
    Varma, Vijay
    Field, Scott E.
    Scheel, Mark A.
    Blackman, Jonathan
    Kidder, Lawrence E.
    Pfeiffer, Harald P.
    PHYSICAL REVIEW D, 2019, 99 (06)