Numerical relativity multimodal waveforms using absorbing boundary conditions

被引:0
|
作者
Buchman, Luisa T. [1 ]
Duez, Matthew D. [1 ]
Morales, Marlo [1 ]
Scheel, Mark A. [2 ]
Kostersitz, Tim M. [3 ]
Evans, Andrew M. [4 ]
Mitman, Keefe [2 ]
机构
[1] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA
[2] CALTECH, Walter Burke Inst Theoret Phys, TAPIR, MC 350-17, Pasadena, CA 91125 USA
[3] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
[4] UC Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
关键词
numerical relativity; binary black holes; multimodal gravitational waves; absorbing boundary conditions; higher order boundary conditions; GENERAL-RELATIVITY; GRAVITATIONAL WAVES; EQUATIONS; EVOLUTION;
D O I
10.1088/1361-6382/ad65af
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Errors due to imperfect boundary conditions in numerical relativity simulations of binary black holes (BBHs) can produce unphysical reflections of gravitational waves which compromise the accuracy of waveform predictions, especially for subdominant modes. A system of higher order absorbing boundary conditions which greatly reduces this problem was introduced in earlier work (Buchman and Sarbach 2006 Class. Quantum Grav. 23 6709). In this paper, we devise two new implementations of this boundary condition system in the Spectral Einstein Code (SpEC), and test them in both linear multipolar gravitational wave and inspiralling mass ratio 7:1 BBH simulations. One of our implementations in particular is shown to be extremely robust and to produce accuracy superior to the standard freezing-Psi 0 boundary condition usually used by SpEC.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Linearized perturbations of the Kerr spacetime and outer boundary conditions in numerical relativity
    Deadman, E.
    Stewart, J. M.
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (01)
  • [22] Consistency of post-Newtonian waveforms with numerical relativity
    Baker, John G.
    van Meter, James R.
    McWilliams, Sean T.
    Centrella, Joan
    Kelly, Bernard J.
    PHYSICAL REVIEW LETTERS, 2007, 99 (18)
  • [23] Perturbative extraction of gravitational waveforms generated with numerical relativity
    Nakano, Hiroyuki
    Healy, James
    Lousto, Carlos O.
    Zlochower, Yosef
    PHYSICAL REVIEW D, 2015, 91 (10):
  • [24] SYNTHESIS OF ABSORBING BOUNDARY-CONDITIONS FOR THE FDTD METHOD - NUMERICAL RESULTS
    TROMP, ENM
    OLIVIER, JC
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1995, 43 (02) : 213 - 215
  • [25] ON BOUNDARY CONDITIONS IN GENERAL RELATIVITY
    NARIAI, H
    PROGRESS OF THEORETICAL PHYSICS, 1965, 34 (01): : 173 - &
  • [26] Stability of absorbing boundary conditions
    Ramahi, OM
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1999, 47 (04) : 593 - 599
  • [27] Fixing the BMS frame of numerical relativity waveforms with BMS charges
    Mitman, Keefe
    Stein, Leo C.
    Boyle, Michael
    Deppe, Nils
    Hebert, Francois
    Kidder, Lawrence E.
    Moxon, Jordan
    Scheel, Mark A.
    Teukolsky, Saul A.
    Throwe, William
    Vu, Nils L.
    PHYSICAL REVIEW D, 2022, 106 (08)
  • [28] A no-boundary method for numerical relativity
    Bieri, Lydia
    Garfinkle, David
    Yau, Shing-Tung
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (04)
  • [29] Constraint-preserving boundary conditions in the Z4 numerical relativity formalism
    Bona, C
    Ledvinka, T
    Palenzuela-Luque, C
    Zácek, M
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (13) : 2615 - 2633
  • [30] Absorbing Boundary Conditions for Hyperbolic Systems
    Matthias Ehrhardt
    Numerical Mathematics:Theory,Methods and Applications, 2010, (03) : 295 - 337