Numerical relativity multimodal waveforms using absorbing boundary conditions

被引:0
|
作者
Buchman, Luisa T. [1 ]
Duez, Matthew D. [1 ]
Morales, Marlo [1 ]
Scheel, Mark A. [2 ]
Kostersitz, Tim M. [3 ]
Evans, Andrew M. [4 ]
Mitman, Keefe [2 ]
机构
[1] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA
[2] CALTECH, Walter Burke Inst Theoret Phys, TAPIR, MC 350-17, Pasadena, CA 91125 USA
[3] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
[4] UC Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
关键词
numerical relativity; binary black holes; multimodal gravitational waves; absorbing boundary conditions; higher order boundary conditions; GENERAL-RELATIVITY; GRAVITATIONAL WAVES; EQUATIONS; EVOLUTION;
D O I
10.1088/1361-6382/ad65af
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Errors due to imperfect boundary conditions in numerical relativity simulations of binary black holes (BBHs) can produce unphysical reflections of gravitational waves which compromise the accuracy of waveform predictions, especially for subdominant modes. A system of higher order absorbing boundary conditions which greatly reduces this problem was introduced in earlier work (Buchman and Sarbach 2006 Class. Quantum Grav. 23 6709). In this paper, we devise two new implementations of this boundary condition system in the Spectral Einstein Code (SpEC), and test them in both linear multipolar gravitational wave and inspiralling mass ratio 7:1 BBH simulations. One of our implementations in particular is shown to be extremely robust and to produce accuracy superior to the standard freezing-Psi 0 boundary condition usually used by SpEC.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Numerical dispersion and absorbing boundary conditions
    Petropoulos, PG
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2000, 13 (05) : 483 - 498
  • [2] NUMERICAL ANALYSIS OF THE SEMISUBMERSIBLE USING GENERATING-ABSORBING BOUNDARY CONDITIONS
    Reddy, Likhitha Ramesh
    Vire, Axelle
    PROCEEDINGS OF THE ASME 2022 4TH INTERNATIONAL OFFSHORE WIND TECHNICAL CONFERENCE, IOWTC2022, 2022,
  • [3] Notes on the integration of numerical relativity waveforms
    Reisswig, Christian
    Pollney, Denis
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (19)
  • [4] Constraint-preserving boundary conditions in numerical relativity
    Calabrese, G
    Lehner, L
    Tiglio, M
    PHYSICAL REVIEW D, 2002, 65 (10)
  • [5] Excision and avoiding the use of boundary conditions in numerical relativity
    Ripley, Justin L.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (23)
  • [6] Exact boundary conditions in numerical relativity using multiple grids: scalar field tests
    Calabrese, Gioel
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (17) : 5439 - 5450
  • [7] Boundary Conditions for Constrained Systems of Evolution Equations in Numerical Relativity
    Ledvinka, Tomas
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [8] Numerical solution of nonlinear exterior wave problems using local absorbing boundary conditions
    Patlashenko, I
    Givoli, D
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2000, 1 (02): : 61 - 69
  • [9] Length requirements for numerical-relativity waveforms
    Hannam, Mark
    Husa, Sascha
    Ohme, Frank
    Ajith, P.
    PHYSICAL REVIEW D, 2010, 82 (12):
  • [10] Fixing the BMS frame of numerical relativity waveforms
    Mitman, Keefe
    Khera, Neev
    Iozzo, Dante A. B.
    Stein, Leo C.
    Boyle, Michael
    Deppe, Nils
    Kidder, Lawrence E.
    Moxon, Jordan
    Pfeiffer, Harald P.
    Scheel, Mark A.
    Teukolsky, Saul A.
    Throwe, William
    PHYSICAL REVIEW D, 2021, 104 (02)