Ensemble learning method for classification: Integrating data envelopment analysis with machine learning

被引:0
|
作者
An, Qingxian [1 ,2 ]
Huang, Siwei [1 ]
Han, Yuxuan [1 ]
Zhu, You [3 ,4 ]
机构
[1] Cent South Univ, Sch Business, Changsha 410083, Peoples R China
[2] Hefei Univ Technol, Sch Econ, Hefei 230601, Peoples R China
[3] Hunan Univ, Business Sch, Changsha 410082, Peoples R China
[4] Hunan Prov Key Lab Philosophy & Social Sci Ind Dig, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Ensemble learning; Data envelopment analysis; Classifier; Large dataset; STATISTICAL COMPARISONS; CLASSIFIERS; EFFICIENCY; DEA;
D O I
10.1016/j.cor.2024.106739
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In classification tasks with large sample sets, the use of a single classifier carries the risk of overfitting. To overcome this issue, an ensemble of classifier models has often been shown to outperform the use of a single "best" model. Given the rich variety of classifier models available, the selection of the high-efficiency classifiers for a given task dataset remains an urgent challenge. However, most of the previous classifier selection methods only focus on the measurement of classification output performance without considering the computational cost. This paper proposes a new ensemble learning method to improve the classification quality for big datasets by using data envelopment analysis. It contains the following two stages: classifier selection and classifier combination. In the first stage, the commonly used classifiers are evaluated on the basis of their performance on resource consumption and classification output performance using the range directional model (RDM); then, the most efficient classifiers are selected. In the second stage, the classifier confusion matrix is evaluated using the data envelopment analysis (DEA) cross-efficiency model. Then, the weight for the classifier combination is determined to ensure that classifiers with higher performance have greater weights based on the cross-efficiency values. Experimental results demonstrate the superiority of the cross-efficiency model over the BCC model and the benchmark voting method in model ensemble. Furthermore, our method has been shown to save more computational resources and yields better results than existing methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] An unsupervised learning-based generalization of Data Envelopment Analysis
    Moragues, Raul
    Aparicio, Juan
    Esteve, Miriam
    OPERATIONS RESEARCH PERSPECTIVES, 2023, 11
  • [32] A deep ensemble learning method for cherry classification
    Kiyas Kayaalp
    European Food Research and Technology, 2024, 250 : 1513 - 1528
  • [33] Classification of Stroke Victims through Supervised Machine Learning Algorithms and Ensemble Learning
    Hensley, Dalton
    Elgazzar, Heba
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 58 - 64
  • [34] Ensemble learning of deep learning and traditional machine learning approaches for skin lesion segmentation and classification
    Khan, Adil H.
    Iskandar, Dayang NurFatimah Awang
    Al-Asad, Jawad F.
    Mewada, Hiren
    Sherazi, Muhammad Abid
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (13)
  • [35] Assessing the impact of hydropower projects in Brazil through data envelopment analysis and machine learning
    Bortoluzzi, Mirian
    Furlan, Marcelo
    Neto, Jose Francisco dos Reis
    RENEWABLE ENERGY, 2022, 200 : 1316 - 1326
  • [36] A Classification Method Based on Ensemble Learning of Deep Learning and Multidimensional Scaling
    Miyazawa, Kazuya
    Sato-Ilic, Mika
    INTELLIGENT DECISION TECHNOLOGIES, KES-IDT 2021, 2021, 238 : 379 - 390
  • [37] Genetic Programming with Interval Functions and Ensemble Learning for Classification with Incomplete Data
    Cao Truong Tran
    Zhang, Mengjie
    Xue, Bing
    Andreae, Peter
    AI 2018: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, 11320 : 577 - 589
  • [38] Integrating Data and Model Space in Ensemble Learning by Visual Analytics
    Schneider, Bruno
    Jaeckle, Dominik
    Stoffel, Florian
    Diehl, Alexandra
    Fuchs, Johannes
    Keim, Daniel
    IEEE TRANSACTIONS ON BIG DATA, 2021, 7 (03) : 483 - 496
  • [39] Extreme Learning Machine-Based Ensemble Transfer Learning for Hyperspectral Image Classification
    Liu, Xiaobo
    Hu, Qiubo
    Cai, Yaoming
    Cai, Zhihua
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 3892 - 3902
  • [40] Multiple Imputation and Ensemble Learning for Classification with Incomplete Data
    Cao Truong Tran
    Zhang, Mengjie
    Andreae, Peter
    Xue, Bing
    Lam Thu Bui
    INTELLIGENT AND EVOLUTIONARY SYSTEMS, IES 2016, 2017, 8 : 401 - 415