Facilitating pathway and network based analysis of RNA-Seq data with pathlinkR

被引:0
作者
Blimkie, Travis M. [1 ]
An, Andy [1 ]
Hancock, Robert E. W. [1 ]
机构
[1] Univ British Columbia, Ctr Microbial Dis & Immun Res, Dept Microbiol & Immunol, REW Hancock Lab, Vancouver, BC, Canada
关键词
PACKAGE;
D O I
10.1371/journal.pcbi.1012422
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
R package pathlinkR is designed to aid transcriptomic analyses by streamlining and simplifying the process of analyzing and interpreting differentially expressed genes derived from human RNA-Seq data. It provides an integrated approach to performing pathway enrichment and network-based analyses, while also producing publication-quality figures to summarize these results, allowing users to more efficiently interpret their findings and extract biological meaning from large amounts of data. pathlinkR is available to install from the software repository Bioconductor at https://bioconductor.org/packages/pathlinkR/, with support available through the Bioconductor forums.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A Panel of rSNPs Demonstrating Allelic Asymmetry in Both ChIP-seq and RNA-seq Data and the Search for Their Phenotypic Outcomes through Analysis of DEGs
    Korbolina, Elena E.
    Bryzgalov, Leonid O.
    Ustrokhanova, Diana Z.
    Postovalov, Sergey N.
    Poverin, Dmitry, V
    Damarov, Igor S.
    Merkulova, Tatiana, I
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (14)
  • [42] The Regulatory Network and Role of the circRNA-miRNA-mRNA ceRNA Network in the Progression and the Immune Response of Wilms Tumor Based on RNA-Seq
    Tian, Xiao-Mao
    Xiang, Bin
    Zhang, Zhao-Xia
    Li, Yan-Ping
    Shi, Qin-Lin
    Li, Mu-Jie
    Li, Qi
    Yu, Yi-Hang
    Lu, Peng
    Liu, Feng
    Liu, Xing
    Lin, Tao
    He, Da-Wei
    Wei, Guang-Hui
    FRONTIERS IN GENETICS, 2022, 13
  • [43] A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data
    Wu, Hao
    Wang, Chi
    Wu, Zhijin
    BIOSTATISTICS, 2013, 14 (02) : 232 - 243
  • [44] Effect of RNA-Seq data normalization on protein interactome mapping for Alzheimer's disease
    Duz, Elif
    Cakir, Tunahan
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 109
  • [45] Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data
    Li, Jun
    Tibshirani, Robert
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2013, 22 (05) : 519 - 536
  • [46] Rank-in: enabling integrative analysis across microarray and RNA-seq for cancer
    Tang, Kailin
    Ji, Xuejie
    Zhou, Mengdi
    Deng, Zeliang
    Huang, Yuwei
    Zheng, Genhui
    Cao, Zhiwei
    NUCLEIC ACIDS RESEARCH, 2021, 49 (17)
  • [47] Modeling and cleaning RNA-seq data significantly improve detection of differentially expressed genes
    Deyneko, Igor, V
    Mustafaev, Orkhan N.
    Tyurin, Alexander A.
    Zhukova, Ksenya, V
    Varzari, Alexander
    Goldenkova-Pavlova, Irina, V
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [48] ExplorATE: a new pipeline to explore active transposable elements from RNA-seq data
    Femenias, Martin M.
    Santos, Juan C.
    Sites, Jack W., Jr.
    Avila, Luciano J.
    Morando, Mariana
    BIOINFORMATICS, 2022, 38 (13) : 3361 - 3366
  • [49] Comparative Analysis of the Liver Transcriptome among Cattle Breeds Using RNA-seq
    Pareek, Chandra Shekhar
    Sachajko, Mateusz
    Jaskowski, Jedrzej M.
    Herudzinska, Magdalena
    Skowronski, Mariusz
    Domagalski, Krzysztof
    Szczepanek, Joanna
    Czarnik, Urszula
    Sobiech, Przymeslaw
    Wysocka, Dominika
    Pierzchala, Mariusz
    Polawska, Ewa
    Stepanow, Kamila
    Ogluszka, Magdalena
    Juszczuk-Kubiak, Edyta
    Feng, Yaping
    Kumar, Dibyendu
    VETERINARY SCIENCES, 2019, 6 (02)
  • [50] MINTIE: identifying novel structural and splice variants in transcriptomes using RNA-seq data
    Cmero, Marek
    Schmidt, Breon
    Majewski, Ian J.
    Ekert, Paul G.
    Oshlack, Alicia
    Davidson, Nadia M.
    GENOME BIOLOGY, 2021, 22 (01)