An Exemplification of Decisions of Machine Learning Classifiers to Predict Handover in a 5G/4G/3G Cellular Communications Network

被引:1
|
作者
Tahat, Ashraf [1 ]
Wahhab, Farah [2 ]
Edwan, Talal A. [3 ]
机构
[1] Princess Sumaya Univ Technol, Dept Commun Engn, Amman, Jordan
[2] Orange Jordan Telecom Grp, Mobile Access Network Engn, Amman, Jordan
[3] Univ Jordan, Dept Comp Engn, Amman, Jordan
来源
20TH INTERNATIONAL CONFERENCE ON THE DESIGN OF RELIABLE COMMUNICATION NETWORKS, DRCN 2024 | 2024年
关键词
machine learning; handover; base station; classification; 5G; 4G; cellular network;
D O I
10.1109/DRCN60692.2024.10539173
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile applications and high-end Internet- ofThings (IoT) devices are progressively becoming reliant on highdata rates and high endurance content delivery, while the provided data rates on cellular communications connectivity links are intrinsically time-varying. Handover (HO) is a primary element of cellular communication networks that requires to be appropriately managed considering that HOs among base transceiver stations and between access modes as a result of user mobility pose difficulties in delivering a desired rich user Quality-of-Experience (QoE). That is because there are multiple impediments to quality-of-service (QoS) such as reduced data rate and interruptions of service. The ability to make accurate decisions in predicting the upcoming HOs, and consequently the anticipated supported data rate, will give applications valuable latitude to make perceptive adaptations to evade substantial degradation in QoE/QoS. In this paper, we provide a proof-of-concept, and investigation of the decision accuracy of Machine Learning (ML) based prediction of mobile HOs in real-time in co-existing 3G/UMTS, 4G/LTE, and 5G (NSA) networks. We render the results of our measurement campaigns, and relevant feature values capturing the influences of the environment in the form of GPS location coordinates, received signal strength indicator (RSSI), and associated connectivity modes. To that end, we conduct a countertype analysis to compare the performance of a distinct collection of ML classification algorithms to assess their decision accuracy in predicting HOs. Evaluation metrics revealed an optimum ML algorithm for HO prediction tasks, which should be useful to employ in the context of heterogeneous cellular communications networks.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Handover Control in MBMS enabled 3G Mobile Cellular Networks
    Christophorou, Christophoros
    Pitsillides, Andreas
    Binucci, Nicola
    2007 PROCEEDINGS OF THE 16TH IST MOBILE AND WIRELESS COMMUNICATIONS, VOLS 1-3, 2007, : 791 - +
  • [32] Machine Learning Threatens 5G Security
    Suomalainen, Jani
    Juhola, Arto
    Shahabuddin, Shahriar
    Mammela, Aarne
    Ahmad, Ijaz
    IEEE ACCESS, 2020, 8 : 190822 - 190842
  • [33] Machine learning: The Panacea for 5G complexities
    Hari Kumar N.
    Baskaran S.
    Journal of ICT Standardization, 2019, 7 (02): : 157 - 170
  • [34] Traffic analysis for 5G network slice based on machine learning
    Xie, Feng
    Wei, Dongxue
    Wang, Zhencheng
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2021, 2021 (01)
  • [35] Timely Admission Control for Network Slicing in 5G With Machine Learning
    Vincenzi, Matted
    Lopez-Aguilera, Elena
    Garcia-Villegas, Eduard
    IEEE ACCESS, 2021, 9 : 127595 - 127610
  • [36] A Machine Learning Approach for CQI Feedback Delay in 5G and Beyond 5G Networks
    Balieiro, Andson
    Dias, Kelvin
    Guarda, Paulo
    2021 30TH WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC 2021), 2021, : 26 - 30
  • [37] A machine learning based approach for 5G network security monitoring
    Chen B.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [38] Machine Learning based Resource Orchestration for 5G Network Slices
    Salhab, Nazih
    Rahim, Rana
    Langar, Rami
    Boutaba, Raouf
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [39] Traffic analysis for 5G network slice based on machine learning
    Feng Xie
    Dongxue Wei
    Zhencheng Wang
    EURASIP Journal on Wireless Communications and Networking, 2021
  • [40] 5G Network Management System With Machine Learning Based Analytics
    Ramachandran, Madanagopal
    Archana, T.
    Deepika, V
    Kumar, A. Arjun
    Sivalingam, Krishna M.
    IEEE ACCESS, 2022, 10 : 73610 - 73622