Decoupled Optimisation for Long-Tailed Visual Recognition

被引:0
作者
Cong, Cong [1 ]
Xuan, Shiyu [2 ]
Liu, Sidong [3 ]
Zhang, Shiliang [2 ]
Pagnucco, Maurice [1 ]
Song, Yang [1 ]
机构
[1] Univ New South Wales, Sch Comp Sci & Engn, Sydney, Australia
[2] Peking Univ, Sch Comp Sci, Natl Key Lab Multimedia Informat Proc, Beijing, Peoples R China
[3] Macquarie Univ, Australian Inst Hlth Innovat, Sydney, Australia
来源
THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 2 | 2024年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When training on a long-tailed dataset, conventional learning algorithms tend to exhibit a bias towards classes with a larger sample size. Our investigation has revealed that this biased learning tendency originates from the model parameters, which are trained to disproportionately contribute to the classes characterised by their sample size (e.g., many, medium, and few classes). To balance the overall parameter contribution across all classes, we investigate the importance of each model parameter to the learning of different class groups, and propose a multistage parameter Decouple and Optimisation (DO) framework that decouples parameters into different groups with each group learning a specific portion of classes. To optimise the parameter learning, we apply different training objectives with a collaborative optimisation step to learn complementary information about each class group. Extensive experiments on long-tailed datasets, including CIFAR100, Places-LT, ImageNet-LT, and iNaturaList 2018, show that our framework achieves competitive performance compared to the state-of-the-art.
引用
收藏
页码:1380 / 1388
页数:9
相关论文
共 54 条
[1]   Balanced Product of Calibrated Experts for Long-Tailed Recognition [J].
Aimar, Emanuel Sanchez ;
Jonnarth, Arvi ;
Felsberg, Michael ;
Kuhlmann, Marco .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :19967-19977
[2]   Long-Tailed Recognition via Weight Balancing [J].
Alshammari, Shaden ;
Wang, Yu-Xiong ;
Ramanan, Deva ;
Kong, Shu .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :6887-6897
[3]   ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot [J].
Cai, Jiarui ;
Wang, Yizhou ;
Hwang, Jenq-Neng .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :112-121
[4]  
Chaudhry A, 2021, AAAI CONF ARTIF INTE, V35, P6993
[5]   Feature Space Augmentation for Long-Tailed Data [J].
Chu, Peng ;
Bian, Xiao ;
Liu, Shaopeng ;
Ling, Haibin .
COMPUTER VISION - ECCV 2020, PT XXIX, 2020, 12374 :694-710
[6]   Adaptive Unified Contrastive Learning for Imbalanced Classification [J].
Cong, Cong ;
Yang, Yixing ;
Liu, Sidong ;
Pagnucco, Maurice ;
Di Ieva, Antonio ;
Berkovsky, Shlomo ;
Song, Yang .
MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2022, 2022, 13583 :348-357
[7]   IMBALANCED HISTOPATHOLOGY IMAGE CLASSIFICATION USING DEEP FEATURE GRAPH ATTENTION NETWORK [J].
Cong, Cong ;
Yang, Yixing ;
Liu, Sidong ;
Pagnucco, Maurice ;
Song, Yang .
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
[8]   Randaugment: Practical automated data augmentation with a reduced search space [J].
Cubuk, Ekin D. ;
Zoph, Barret ;
Shlens, Jonathon ;
Le, Quoc, V .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :3008-3017
[9]   Parametric Contrastive Learning [J].
Cui, Jiequan ;
Zhong, Zhisheng ;
Liu, Shu ;
Yu, Bei ;
Jia, Jiaya .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :695-704
[10]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848