Enhancing machining accuracy of banana fiber-reinforced composites with ensemble machine learning

被引:14
作者
Saravanakumar, S. [1 ]
Sathiyamurthy, S. [1 ]
Vinoth, V. [1 ]
机构
[1] Easwari Engn Coll, Dept Automobile Engn, Chennai 600089, India
关键词
Abrasive Water Jet Machining (AWJM); Machine learning; Artificial Neural Network (ANN); Long Short-Term Memory (LSTM); Hyperparameter tuning; Ensemble learning; RSM Optimization; ARTIFICIAL NEURAL-NETWORKS; POLYMER COMPOSITES; MECHANICAL-BEHAVIOR; PREDICTION; INTELLIGENCE;
D O I
10.1016/j.measurement.2024.114912
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Through innovative predictive modeling, this study advances Abrasive Water Jet Machining (AWJM) for banana fiber -reinforced biocomposites. Utilizing Artificial Neural Network (ANN) and Long Short -Term Memory (LSTM) models, hyperparameters are meticulously tuned for predicting Surface Roughness (Ra), Material Removal Rate (MRR), and Kerf Angle (Ka). Optimal configurations are identified, such as 3-6-6-4-1, 3-5-5-4-1, and 3-5-4-4-1 for ANN models, and 250, 100, and 50 units for LSTM models. Beyond individual models, the study explores stacking ensemble models, merging ANN and LSTM strengths with a Linear Regression final estimator, showcasing robust performance validated with high R -squared values. Regression models from Design Expert 13 contribute to understanding process parameter -outcome relationships. Optimized input parameters offer insights into minimizing surface roughness and kerf angle while maximizing MRR. This holistic approach, integrating advanced machine learning and ensemble learning, enhances predictive accuracy for banana -reinforced biocomposites, providing a versatile framework for diverse materials processing applications.
引用
收藏
页数:18
相关论文
共 62 条
  • [1] A novel integrated BPNN/SNN artificial neural network for predicting the mechanical performance of green fibers for better composite manufacturing
    Al-Jarrah, Rami
    AL-Oqla, Faris M.
    [J]. COMPOSITE STRUCTURES, 2022, 289
  • [2] First-ply failure prediction of glass/epoxy composite pipes using an artificial neural network model
    Ang, J. Y.
    Majid, M. S. Abdul
    Nor, A. Mohd
    Yaacob, S.
    Ridzuan, M. J. M.
    [J]. COMPOSITE STRUCTURES, 2018, 200 : 579 - 588
  • [3] Abrasive water jet machining techniques and parameters: a state of the art, open issue challenges and research directions
    Anu Kuttan, A.
    Rajesh, R.
    Dev Anand, M.
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2021, 43 (04)
  • [4] A Review on the Abrasive Water-Jet Machining of Metal-Carbon Fiber Hybrid Materials
    Banon, Fermin
    Sambruno, Alejandro
    Gonzalez-Rovira, Leandro
    Vazquez-Martinez, Juan Manuel
    Salguero, Jorge
    [J]. METALS, 2021, 11 (01) : 1 - 29
  • [5] Analysis of Vibration, Deflection Angle and Surface Roughness in Water-Jet Cutting of AZ91D Magnesium Alloy and Simulation of Selected Surface Roughness Parameters Using ANN
    Biruk-Urban, Katarzyna
    Zagorski, Ireneusz
    Kulisz, Monika
    Lelen, Michal
    [J]. MATERIALS, 2023, 16 (09)
  • [6] Abrasive water jet machining of glass fibre reinforced polymer composite: experimental investigation, modelling and optimization
    Dahiya, Anil Kumar
    Bhuyan, Basanta Kumar
    Kumar, Shailendra
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2023, 17 (04): : 1933 - 1947
  • [7] Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks - A review
    El Kadi, H
    [J]. COMPOSITE STRUCTURES, 2006, 73 (01) : 1 - 23
  • [8] Epoxy composite reinforced with jute/basalt hybrid - Characterisation and performance evaluation using machine learning techniques
    Gadagi, Amith
    Sivaprakash, Baskaran
    Adake, Chandrashekar
    Deshannavar, Umesh
    Hegde, Prasad G.
    Santhosh, P.
    Rajamohan, Natarajan
    Osman, Ahmed I.
    [J]. COMPOSITES PART C: OPEN ACCESS, 2024, 14
  • [9] Gopalan V., 2020, Eng. Trans., V68, P297, DOI [DOI 10.24423/ENGTRANS.1167.20200923, 10.24423/EngTrans.1167.20200923]
  • [10] Artificial intelligence and machine learning in design of mechanical materials
    Guo, Kai
    Yang, Zhenze
    Yu, Chi-Hua
    Buehler, Markus J.
    [J]. MATERIALS HORIZONS, 2021, 8 (04) : 1153 - 1172