Recent developments in high-power Li-ion battery electrode architecture and active materials: The fast-charging challenge

被引:0
|
作者
Pelletier-Villeneuve, Brittany [1 ]
Schougaard, Steen B. [1 ]
机构
[1] Univ Quebec Montreal, Quebec Ctr Funct Mat, Dept Chem NanoQAM, 2101 Jeanne Mance St, Montreal, PQ H3C 3P8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Li-ion batteries; High-power; Carbon-coating; Tortuosity; Porosity; HIGH-RATE PERFORMANCE; ELECTROCHEMICAL PERFORMANCE; TRANSPORT KINETICS; CATHODE MATERIAL; CARBON; COMPOSITE; OPTIMIZATION; STABILITY; LIFEPO4;
D O I
10.1016/j.coelec.2024.101521
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The desire for fast -charging Li -ion batteries is uncontestable and will continue to rise with the interest in electric vehicles. Specifically, the development of batteries that can be charged in minutes would greatly motivate the change from fossil energies to greener electric ones. A cornerstone to this development is an increase in the ionic and electronic conductivity of the electrodes. This review covers recent developments in this area, from microscale approaches that include coating the active particles with electron conductors or alternatively coating the electronic conductor scaffoldings with active particles to mesoscale designs, where optimizing the electrode structure enables shorter ionic and electronic pathways.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A Figure of Merit for Fast-Charging Li-ion Battery Materials
    Xia, Huarong
    Zhang, Wei
    Cao, Shengkai
    Chen, Xiaodong
    ACS NANO, 2022, 16 (06) : 8525 - 8530
  • [2] Safe and fast-charging Li-ion battery with long shelf life for power applications
    Zaghib, K.
    Dontigny, M.
    Guerfi, A.
    Charest, P.
    Rodrigues, I.
    Mauger, A.
    Julien, C. M.
    JOURNAL OF POWER SOURCES, 2011, 196 (08) : 3949 - 3954
  • [3] Unveiling Capacity Degradation Mechanism of Li-ion Battery in Fast-charging Process
    Zhang, Sheng S.
    CHEMELECTROCHEM, 2020, 7 (02) : 555 - 560
  • [4] Challenges and recent progress in fast-charging lithium-ion battery materials
    He, Jianhui
    Meng, Jingke
    Huang, Yunhui
    JOURNAL OF POWER SOURCES, 2023, 570
  • [5] MINERALS AS A SOURCE OF NOVEL Li-ION BATTERY ELECTRODE MATERIALS
    Liivat, Anti
    Thomas, Josh
    MACEDONIAN JOURNAL OF CHEMISTRY AND CHEMICAL ENGINEERING, 2015, 34 (01) : 145 - 149
  • [6] Theoretical Prediction of Phosphorene and Nanoribbons As Fast-Charging Li Ion Battery Anode Materials
    Yao, Qiushi
    Huang, Chengxi
    Yuan, Yongbo
    Liu, Yuzhen
    Liu, Sumei
    Deng, Kaiming
    Kan, Erjun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (12) : 6923 - 6928
  • [7] Flexible High-Energy Li-Ion Batteries with Fast-Charging Capability
    Park, Mi-Hee
    Noh, Mijung
    Lee, Sanghan
    Ko, Minseong
    Chae, Sujong
    Sim, Soojin
    Choi, Sinho
    Kim, Hyejung
    Nam, Haisol
    Park, Soojin
    Cho, Jaephil
    NANO LETTERS, 2014, 14 (07) : 4083 - 4089
  • [8] A Review on Electrode Materials of Fast-Charging Lithium-Ion batteries
    Zhang, Zhen
    Zhao, Decheng
    Xu, Yuanyuan
    Liu, Shupei
    Xu, Xiangyu
    Zhou, Jian
    Gao, Fei
    Tang, Hao
    Wang, Zhoulu
    Wu, Yutong
    Liu, Xiang
    Zhang, Yi
    CHEMICAL RECORD, 2022, 22 (10)
  • [9] Nanostructured Electrode Materials for Li-ion Battery
    Balaya, Palani
    Saravanan, Kuppan
    Hariharan, Srirama
    ENERGY HARVESTING AND STORAGE: MATERIALS, DEVICES, AND APPLICATIONS, 2010, 7683
  • [10] Structural Regulation and Design of Electrode Materials and Electrolytes for Fast-Charging Lithium-Ion Batteries
    Yu, Disheng
    Liu, Changlin
    Lin, Xue
    Sheng, Lizhi
    Jiang, Lili
    PROGRESS IN CHEMISTRY, 2024, 36 (01) : 132 - 144