On the estimation of ridge penalty in linear regression: Simulation and application

被引:3
|
作者
Khan, Muhammad Shakir [1 ,2 ]
Ali, Amjad [1 ]
Suhail, Muhammad [3 ]
Alotaibi, Eid Sadun [4 ]
Alsubaie, Nahaa Eid [4 ]
机构
[1] Islamia Coll Peshawar, Peshawar, Pakistan
[2] Livestock & Dairy Dev Dept Research Wing Peshawar, Khyber Pakhtunkhwa, Pakistan
[3] Univ Agr, Dept Stat, Peshawar Amir Muhammad Khan Campus, Mardan, Pakistan
[4] Taif Univ, AlKhurmah Univ Coll, Dept Math, POB 11099, Taif 21944, Saudi Arabia
关键词
Linear regression model; Multicollinearity; Ridge regression; Two parameter ridge estimators; Mean square error; Monte Carlo simulation; Prediction; PERFORMANCE;
D O I
10.1016/j.kjs.2024.100273
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
According to existing literature, the ordinary least squares (OLS) estimators are not the best in presence of multicollinearity. The inability of OLS estimators against multicollinearity has paved the way for the development of various ridge type estimators for circumventing the problem of multicollinearity. In this paper improved two-parameter ridge (ITPR) estimators are proposed. A simulation study is used to evaluate the performance of proposed estimators based on minimum mean squared error (MSE) criterion. The simulative results reveal that, based on minimum MSE, ITPR2 was the most efficient estimator compared to the considered estimators in the study. Finally, a real-life dataset is analyzed to demonstrate the applications of the proposed estimators and also checked their efficacy for mitigation of multicollinearity.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Estimation of variance components, heritability and the ridge penalty in high-dimensional generalized linear models
    Veerman, Jurre R.
    Leday, Gwenael G. R.
    van de Wiel, Mark A.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (01) : 116 - 134
  • [32] Modified ridge-type for the Poisson regression model: simulation and application
    Lukman, Adewale F.
    Aladeitan, Benedicta
    Ayinde, Kayode
    Abonazel, Mohamed R.
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (08) : 2124 - 2136
  • [33] On the performance of link functions in the beta ridge regression model: Simulation and application
    Mustafa, Sidra
    Amin, Muhammad
    Akram, Muhammad Nauman
    Afzal, Nimra
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (18):
  • [34] A new ridge-type estimator for the linear regression model with correlated regressors
    Owolabi, Abiola T.
    Ayinde, Kayode
    Alabi, Olusegun O.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (15):
  • [35] On the estimation of Bell regression model using ridge estimator
    Amin, Muhammad
    Akram, Muhammad Nauman
    Majid, Abdul
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (03) : 854 - 867
  • [36] Handling linear dependency in linear regression models: Almost unbiased modified ridge-type estimator
    Jegede, Segun L.
    Lukman, Adewale F.
    Alqasem, Ohud A.
    Abd Elwahab, Maysaa Elmahi
    Ayinde, Kayode
    Kibria, B. M. Golam
    Adewinbi, Hezekiah
    SCIENTIFIC AFRICAN, 2024, 25
  • [37] A ridge regression estimation approach to the measurement error model
    Saleh, A. K. Md Ehsanes
    Shalabh
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 123 : 68 - 84
  • [38] Developing ridge estimators for the extended Poisson-Tweedie regression model: Method, simulation, and application
    Abonazel, Mohamed R.
    Alzahrani, Ali Rashash R.
    Saber, Ashrakat Adel
    Dawoud, Issam
    Tageldin, Elsayed
    Azazy, Abeer R.
    SCIENTIFIC AFRICAN, 2024, 23
  • [39] A restricted gamma ridge regression estimator combining the gamma ridge regression and the restricted maximum likelihood methods of estimation
    Qasim, Muhammad
    Akram, Muhammad Nauman
    Amin, Muhammad
    Mansson, Kristofer
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (08) : 1696 - 1713
  • [40] Bootstrap confidence interval of ridge regression in linear regression model: A comparative study via a simulation study
    Ozkale, M. Revan
    Altuner, Husniye
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (20) : 7405 - 7441