Exergy and pinch assessment of an innovative liquid air energy storage configuration based on wind renewable energy with net-zero carbon emissions

被引:3
|
作者
Sheikhghaffari, Nazanin [1 ]
Ebrahimi, Armin [2 ]
Ghorbani, Bahram [1 ]
机构
[1] Amol Univ Special Modern Technol, Fac Engn Modern Technol, Amol, Iran
[2] K N Toosi Univ Technol, Fac Mech Engn, Tehran, Iran
关键词
Peak load shaving; Net -zero carbon emissions; Wind turbines; Pinch and exergy analyses; ECONOMIC-ASSESSMENT; SEPARATION UNIT; CO2; CAPTURE; SYSTEMS; POWER; PERFORMANCE; RESOURCES; OPERATION; DESIGN; REGION;
D O I
10.1016/j.cryogenics.2024.103878
中图分类号
O414.1 [热力学];
学科分类号
摘要
Given the rising global energy demands and the fluctuating nature of load demand, advancing various energy storage systems to enhance their efficiency is essential. Moreover, the increase in greenhouse gas emissions from various industries has prompted governments to implement carbon dioxide (CO 2 ) capture systems and invest in renewable energy sources. In this research, a cryogenic energy storage configuration is developed according to the air liquefaction process, liquefied natural gas (LNG) regasification operation, CO 2 capture cycle, and organic Rankine plant. During off-peak times, the air entering the energy storage system is compressed and liquefied using wind energy and the cold energy from LNG vaporization, producing 83.12 kg/s of liquid air. During onpeak times, the liquid air and LNG after recovering the cold energy enter the power generation cycle, generating 119 MW of electrical power. This power generation cycle includes a combustion chamber, gas turbine power plant, and organic Rankine cycles. Flue gases from the power generation cycles enter the amine -based CO 2 capture and then the output CO 2 is stored in liquid form. The storage and round-trip efficiencies of the present energy storage configuration are 67.97 % and 62.50 %, respectively. The results of exergy analysis show that the exergy efficiency of the whole system, off-peak, and on -peak sections are calculated as 64.88 %, 82.40 %, and 74.03 %, respectively. The pinch method for multi -stream exchangers (HX6, HX7, and HX8) is accomplished and the exchanger network related to each one is determined. Three-dimensional sensitivity analysis indicates that storage and round-trip efficiencies increase up to 80.45 % and 66.20 %, respectively when the power generation section pressure increases up to 110 bar and compressed air pressure decreases to 135 bar.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Pinch and exergy assessment of an innovative hydrogen and methane purification process configuration based on solar renewable energy
    Ahmadnejad, Alireza
    Ebrahimi, Armin
    Ghorbani, Bahram
    FUEL, 2024, 359
  • [2] Design and transient analysis of renewable energy-based residential net-zero energy buildings with energy storage
    Wang, Xuan
    Mi, Zhenhao
    Li, Kang
    Huang, Xiaodong
    Bao, Wenjie
    Song, Jinsong
    Wang, Chengkai
    Chen, Guoqing
    Cao, Peng
    RENEWABLE ENERGY, 2024, 220
  • [3] Intermittency and periodicity in net-zero renewable energy systems with storage
    Cosgrove, Paul
    Roulstone, Tony
    Zachary, Stan
    RENEWABLE ENERGY, 2023, 212 : 299 - 307
  • [4] A model for energy master planning and resilience assessment of net-zero emissions community
    Shandiz, Saeid Charani
    Rismanchi, Behzad
    Foliente, Greg
    Aye, Lu
    SUSTAINABLE AND RESILIENT INFRASTRUCTURE, 2023, 8 (04) : 375 - 399
  • [5] Comparative life cycle assessment of renewable energy storage systems for net-zero buildings with varying self-sufficient ratios
    Le, Sony Tay
    Nguyen, Tuan Ngoc
    Bui, Dac-Khuong
    Teodosio, Birch
    Ngo, Tuan Duc
    ENERGY, 2024, 290
  • [6] Solar energy exploitation and storage in a novel hybrid thermo-electrochemical process with net-zero carbon emissions
    Ghorbani, Bahram
    Wang, Wanrong
    Li, Jie
    Jouybari, Alireza Khatami
    Saharkhiz, Mohammad Hossein Monajati
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [7] Grid-scale energy storage with net-zero emissions: comparing the options
    Yao, Joseph G.
    Bui, Mai
    Dowell, Niall Mac
    SUSTAINABLE ENERGY & FUELS, 2019, 3 (11): : 3147 - 3162
  • [8] Achieving a net-zero-carbon energy system in the UK by 2050 with liquid air energy storage
    Liang, Ting
    Li, Yongliang
    Nie, Binjian
    Ahmad, Abdalqader
    Ding, Yulong
    ENERGY CONVERSION AND MANAGEMENT, 2025, 327
  • [9] The role of environmental taxes on carbon emissions in countries aiming for net-zero carbon emissions: Does renewable energy consumption matter?
    Zhu, Yongfeng
    Taylor, David
    Wang, Zilong
    RENEWABLE ENERGY, 2023, 218
  • [10] An urbanization algorithm for districts with minimized emissions based on urban planning and embodied energy towards net-zero exergy targets
    Kilkis, Siir
    Kilkis, Birol
    ENERGY, 2019, 179 : 392 - 406