Time and frequency-domain feature fusion network for multivariate time series classification

被引:2
|
作者
Lei, Tianyang [1 ]
Li, Jichao [1 ]
Yang, Kewei [1 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Deya Rd 109, Changsha 410000, Peoples R China
基金
中国国家自然科学基金;
关键词
Multivariate time series; Time-domain feature; Frequency-domain feature; Graph convolutional networks;
D O I
10.1016/j.eswa.2024.124155
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multivariate time series classification is a significant research topic in the realm of data mining, which encompasses a wide array of practical applications in domains such as healthcare, energy systems, and traffic. The complex temporal and spatial dependencies inherent in multivariate time series pose challenges to classification tasks. Previous studies have usually focused on the time -domain information of multivariate time series. However, achieving accurate classification using only the time -domain information may be difficult. To address this challenge, a time and frequency -domain feature fusion network (TF-Net) for multivariate time series classification is proposed in this paper. Our model contains two modules, the time -domain module and the frequency -domain module. The time -domain module is used to capture the time -domain features of multivariate time series. It is constructed using CNNs and GCNs, enabling the capture of both temporal and spatial dependencies within the time -domain. The frequency -domain module is used to capture the frequencydomain features of multivariate time series data. In this module, we treat the frequency -domain features as images and innovatively transform the multivariate time series classification task into an image classification task. Our method is able to classify multivariate time series from both the time -domain and frequency -domain, which provides a new perspective for multivariate time series analysis. We conduct extensive experiments on the UAE archive, and the experimental results show that our model achieves the best performance compared to the ten state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A new approach for time domain analysis of multivariate and functional time series
    Mohammadpour, M.
    Rezaee, S.
    Soltani, A. R.
    STATISTICS, 2023, 57 (06) : 1380 - 1391
  • [22] Multivariate time series classification with parametric derivative dynamic time warping
    Gorecki, Tomasz
    Luczak, Maciej
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (05) : 2305 - 2312
  • [23] Classification of Multivariate Time Series Using Supervised Isomap
    Weng, Xiaoqing
    Qin, Shimin
    2012 THIRD GLOBAL CONGRESS ON INTELLIGENT SYSTEMS (GCIS 2012), 2012, : 136 - 139
  • [24] Using DenseNet for IoT multivariate time series classification
    Azar, Joseph
    Makhoul, Abdallah
    Couturier, Raphael
    2020 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2020, : 33 - 38
  • [25] A Deep Neural Network Framework for Multivariate Time Series Classification With Positive and Unlabeled Data
    Ienco, Dino
    IEEE ACCESS, 2023, 11 : 20877 - 20884
  • [26] A Multi-granularity Network for Time Series Forecasting on Multivariate Time Series Data
    Wang, Zongqiang
    Xian, Yan
    Wang, Guoyin
    Yu, Hong
    ROUGH SETS, IJCRS 2023, 2023, 14481 : 324 - 338
  • [27] Depression detection on online social network with multivariate time series feature of user depressive symptoms
    Cai, Yicheng
    Wang, Haizhou
    Ye, Huali
    Jin, Yanwen
    Gao, Wei
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 217
  • [28] Z-Time: efficient and effective interpretable multivariate time series classification
    Zed Lee
    Tony Lindgren
    Panagiotis Papapetrou
    Data Mining and Knowledge Discovery, 2024, 38 (1) : 206 - 236
  • [29] Permutation Dependent Feature Mixing for Multivariate Time Series Forecasting
    Yamazono, Rikuto
    Hachiya, Hirotake
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT III, ECML PKDD 2024, 2024, 14943 : 301 - 316
  • [30] Fuzzy clustering based on feature weights for multivariate time series
    Li, Hailin
    Wei, Miao
    KNOWLEDGE-BASED SYSTEMS, 2020, 197