Exploring the electrode materials for high-performance lithium-ion batteries for energy storage application

被引:11
|
作者
Selvi, K. Tamizh [1 ]
Mangai, K. Alamelu [1 ]
Lett, J. Anita [2 ]
Fatimah, Is [3 ]
Sagadevan, Suresh [4 ]
机构
[1] Vel Tech High Tech Dr Rangarajan Dr Sakunthala En, Dept Phys, Chennai, India
[2] Sathyabama Inst Sci & Technol, Dept Phys, Chennai, Tamil Nadu, India
[3] Univ Islam Indonesia, Fac Math & Nat Sci, Dept Chem, Jl Kaliurang Km 14,Kampus Terpadu UII, Yogyakarta, Indonesia
[4] Univ Malaya, Nanotechnol & Catalysis Res Ctr, Kuala Lumpur 50603, Malaysia
关键词
Lithium -ion batteries (LIBs); Electrode materials; Electrochemical performance; Electric vehicles (EVs); Hybrid electric vehicles (HEVs); HIGH-RATE CAPABILITY; ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIALS; FACILE SYNTHESIS; IRON PHOSPHATE; COBALT OXIDE; LI; NANOCOMPOSITES; MANGANESE;
D O I
10.1016/j.est.2024.112208
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion batteries (LIBs) have been emerged as frontrunners in the powering electric vehicles (EVs) and hybrid electric vehicles (HEVs) owing to their exceptional energy density, high output, and cost. These characteristics are crucial for advancements in the electronic equipment market, particularly in emerging fields that focus on sustainable transportation solutions. Early HEVs relied on Nickel Metal Hydride (NiMH) batteries, have employed LaNi5 (lanthanum-nickel alloy) as the negative electrode. Lithium-ion batteries have been an alternative by avoiding the dependence on environmentally hazardous rare-earth elements. The electrochemical performance of LIBs, encompassing factors such as charge density, discharge rate, and cycle life, is heavily influenced by the selection of electrode materials. Lithium-ion batteries offer the significant advancements over NiMH batteries, including increased energy density, higher power output, and longer cycle life. This review discusses the intricate processes of electrode material synthesis, electrode and electrolyte preparation, and their combined impact on the functionality of LIBs.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Synthesis of Porous NiO Nanorods as High-Performance Anode Materials for Lithium-Ion Batteries
    Li, Qian
    Huang, Gang
    Yin, Dongming
    Wu, Yaoming
    Wang, Limin
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2016, 33 (10) : 764 - 770
  • [32] Lithium-Rich Layered Oxide with a Porous Prism Architecture for High-Performance Cathode Materials of Lithium-Ion Batteries
    Chen, Zhaoyong
    Yan, Xiaoyan
    Zhu, Huali
    Wang, Yanxia
    Liu, Qiming
    Duan, Junfei
    Ji, Shan
    Pollet, Bruno G.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (09): : 10973 - 10982
  • [33] MnO@Carbon Core-Shell Nanowires as Stable High-Performance Anodes for Lithium-Ion Batteries
    Li, Xiaowei
    Xiong, Shenglin
    Li, Jingfa
    Liang, Xin
    Wang, Jiazhao
    Bai, Jing
    Qian, Yitai
    CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (34) : 11310 - 11319
  • [34] MOF-Derived CuS@Cu-BTC Composites as High-Performance Anodes for Lithium-Ion Batteries
    Wang, Ping
    Shen, Mengqi
    Zhou, Hu
    Meng, Chunfeng
    Yuan, Aihua
    SMALL, 2019, 15 (47)
  • [35] Nanostructured Silicon-Carbon 3D Electrode Architectures for High-Performance Lithium-Ion Batteries
    Kumar, Sarode Krishna
    Ghosh, Sourav
    Malladi, Sairam K.
    Nanda, Jagjit
    Martha, Surendra K.
    ACS OMEGA, 2018, 3 (08): : 9598 - 9606
  • [36] Review on titanium dioxide nanostructured electrode materials for high-performance lithium batteries
    Munonde, Tshimangadzo S.
    Raphulu, Mpfunzeni C.
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [37] Recent progress on lithium-ion batteries with high electrochemical performance
    Lu, Yong
    Zhang, Qiu
    Chen, Jun
    SCIENCE CHINA-CHEMISTRY, 2019, 62 (05) : 533 - 548
  • [38] Preparation and Lithium Storage Performance of Si/C Composites as Anode Materials for Lithium-Ion Batteries: A Review
    Liu, Jingbo
    Liu, Yanxia
    Guo, Zhenzhen
    Qian, Cheng
    Liu, Fan
    Chai, Fengtao
    Zhao, Chongchong
    Huo, Feng
    ENERGY TECHNOLOGY, 2024,
  • [39] Organic Sulfide Electrode Materials for Lithium-Ion Batteries
    Sun Wanning
    Ying Jierong
    Huang Zhenlei
    Jiang Changyin
    Wan Chunrong
    PROGRESS IN CHEMISTRY, 2009, 21 (09) : 1963 - 1968
  • [40] High performance porous MnO@C composite anode materials for lithium-ion batteries
    Li, Keyan
    Shua, Fenfen
    Guo, Xinwen
    Xue, Dongfeng
    ELECTROCHIMICA ACTA, 2016, 188 : 793 - 800