Exploring the Molecular Mechanisms of Huaier on Modulating Metabolic Reprogramming of Hepatocellular Carcinoma: A Study Based on Network Pharmacology, Molecular Docking and Bioinformatics

被引:0
作者
Wan, Yuxiang [1 ]
Jiang, Honglin [1 ]
Liu, Zeyu [2 ]
Bai, Chen [3 ]
Lian, Yanyan [1 ]
Zhang, Chunguang [1 ]
Zhang, Qiaoli [1 ]
Huang, Jinchang [1 ]
机构
[1] Beijing Univ Chinese Med, Affiliated Hosp 3, Dept Acupuncture & Mini invas Oncol, Beijing 100029, Peoples R China
[2] Sun Yat Sen Univ Canc Ctr, Dept VIP Reg, Guangzhou 510060, Peoples R China
[3] Beijing Univ Chinese Med, Sch Tradit Chinese Med, Beijing 100029, Peoples R China
关键词
Huaier; Hepatocellular carcinoma; AKRIC3; network pharmacology; metabolic reprogramming; KETO REDUCTASE SUPERFAMILY; TRANS-RETINOIC ACID; THERAPEUTIC TARGET; ACCURATE DOCKING; IN-VITRO; CANCER; EXPRESSION; PROTEIN; CELLS; METASTASIS;
D O I
10.2174/0113816128287535240429043610
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background Huaier (Trametes robiniophila Murr), a traditional Chinese medicine, is widely used in China as a complementary and alternative therapy to treat hepatocellular carcinoma (HCC). Past studies have shown that Huaier can arrest the cell cycle, promote apoptosis and inhibit the proliferation of cancer cells. However, how it regulates the metabolism of HCC is still unclear.Objective This study explores the metabolic-related function of Huaier in treating HCC with an in-silico approach.Methods A network pharmacology and bioinformatics-based approach was employed to investigate the molecular pathogenesis of metabolic reprogramming in HCC with Huaier. The compounds of Huaier were obtained from public databases. Oral bioavailability and drug likeness were screened using the TCMSP platform. The differential gene expressions between HCC and non-tumor tissue were calculated and used to find the overlap from the targets of Huaier. The enrichment analysis of the overlapped targets by Metascape helped filter out the metabolism-related targets of Huaier in treating HCC. Protein-protein interaction (PPI) network construction and topological screening revealed the hub nodes. The prognosis and clinical correlation of these targets were validated from the cancer genome atlas (TCGA) database, and the interactions between the hub nodes and active ingredients were validated by molecular docking.Results The results showed that Peroxyergosterol, Daucosterol, and Kaempferol were the primary active compounds of Huaier involved in the metabolic reprogramming of HCC. The top 6 metabolic targets included AKR1C3, CYP1A1, CYP3A4, CYP1A2, CYP17A1, and HSD11B1. The decreased expression of CYP3A4 and increased expression of AKR1C3 were related to the poor overall survival of HCC patients. The molecular docking validated that Peroxyergosterol and Kaempferol exhibited the potential to modulate CYP3A4 and AKR1C3 from a computational perspective.Conclusion This study provided a workflow for understanding the mechanism of Huaier in regulating the metabolic reprogramming of HCC.
引用
收藏
页码:1894 / 1911
页数:18
相关论文
共 50 条
  • [21] Molecular mechanisms of Huanglian jiedu decoction on ulcerative colitis based on network pharmacology and molecular docking
    Yang, Jing
    Tang, Chaotao
    Jin, Ruiri
    Liu, Bixia
    Wang, Peng
    Chen, Youxiang
    Zeng, Chunyan
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [22] Exploring the Molecular Mechanisms of Astragalus membranaceus in Treating Pre-eclampsia using Network Pharmacology and Molecular Docking
    Zhong, Jing
    Lan, Liubing
    LETTERS IN DRUG DESIGN & DISCOVERY, 2024, 21 (09) : 1582 - 1592
  • [23] Exploring the Mechanisms of Arsenic Trioxide (Pishuang) in Hepatocellular Carcinoma Based on Network Pharmacology
    Wang, Xinmiao
    Cao, Luchang
    Wu, Jingyuan
    Zhu, Guanghui
    Zhu, Xiaoyu
    Zhang, Xiaoxiao
    Han, Duoduo
    Shui, Ning
    Ni, Baoyi
    Li, Jie
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2021, 2021
  • [24] Exploring the Mechanism of White Peony in the Treatment of Lupus Nephritis Based on Network Pharmacology and Molecular Docking
    Cao, Yao
    Wang, Chaoban
    Dong, Liqun
    ARCHIVOS ESPANOLES DE UROLOGIA, 2023, 76 (02): : 123 - 131
  • [25] Exploring the mechanisms of magnolol in the treatment of periodontitis by integrating network pharmacology and molecular docking
    Chen, Der-Jeu
    Lai, Cheng-Hung
    BIOCELL, 2023, 47 (06) : 1317 - 1327
  • [26] Exploration of the mechanism of Polyphyllin I against hepatocellular carcinoma based on network pharmacology, molecular docking and experimental validation
    Yilong Chen
    Qiuying Wang
    Shuixiu Bian
    Jing Dong
    Jie Xiong
    Jiamei Le
    Discover Oncology, 16 (1)
  • [27] Exploring the mechanisms of neurotoxicity caused by fuzi using network pharmacology and molecular docking
    An, Junsha
    Fan, Huali
    Han, Mingyu
    Peng, Cheng
    Xie, Jie
    Peng, Fu
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [28] Exploring the Potential Antidepressant Mechanisms of Pinellia by Using the Network Pharmacology and Molecular Docking
    Yu-Gang Xiao
    Han-Biao Wu
    Ji-Sheng Chen
    Xiong Li
    Zhi-Kun Qiu
    Metabolic Brain Disease, 2022, 37 : 1071 - 1094
  • [29] Investigating the Molecular Mechanisms of Resveratrol in Treating Cardiometabolic Multimorbidity: A Network Pharmacology and Bioinformatics Approach with Molecular Docking Validation
    Gong, Wei
    Sun, Peng
    Li, Xiujing
    Wang, Xi
    Zhang, Xinyu
    Cui, Huimin
    Yang, Jianjun
    NUTRIENTS, 2024, 16 (15)
  • [30] Exploring the mechanisms underlying the therapeutic effect of Salvia miltiorrhiza in diabetic nephropathy using network pharmacology and molecular docking
    Zhang, Lili
    Han, Lin
    Wang, Xinmiao
    Wei, Yu
    Zheng, Jinghui
    Zhao, Linhua
    Tong, Xiaolin
    BIOSCIENCE REPORTS, 2021, 41 (04)