Self-adhesive, conductive, and multifunctional hybrid hydrogel for flexible/ wearable electronics based on triboelectric and piezoresistive sensor

被引:5
|
作者
Qiu, Chuang [1 ]
He, Ming [1 ]
Xu, Shi-feng [2 ]
Ali, Aasi Mohammad [1 ]
Shen, Lin [1 ]
Wang, Jia-shi [1 ]
机构
[1] China Med Univ, Shengjing Hosp, Dept Orthoped, Shenyang 110004, Liaoning, Peoples R China
[2] Shenyang Aerosp Univ, Coll Sci, Shenyang 110136, Liaoning, Peoples R China
关键词
Hybrid hydrogel; Flexible electronics; Photothermal therapy; Human; -machine; Interfaces; Sensor; ACTUATORS; ENERGY;
D O I
10.1016/j.ijbiomac.2024.131825
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Flexible electronics are highly developed nowadays in human-machine interfaces (HMI). However, challenges such as lack of flexibility, conductivity, and versatility always greatly hindered flexible electronics applications. In this work, a multifunctional hybrid hydrogel (H-hydrogel) was prepared by combining two kinds of 1D polymer chains (polyacrylamide and polydopamine) and two kinds of 2D nanosheets (Ti3C2Tx MXene and graphene oxide nanosheets) as quadruple crosslinkers. The introduced Ti3C2Tx MXene and graphene oxide nanosheets are bonded with the PAM and PDA polymer chains by hydrogen bonds. This unique crosslinking and stable structure endow the H-hydrogel with advantages such as good flexibility, electrical conductivity, self-adhesion, and mechanical robustness. The two kinds of nanosheets not only improved the mechanical strength and conductivity of the H-hydrogel, but also helped to form the double electric layers (DELs) between the nanosheets and the bulk-free water phase inside the H-hydrogel. When utilized as the electrode of a triboelectric nanogenerator (TENG), high electrical output performances were realized due to the dynamic balance of the DELs between the nanosheets and the H-hydrogel's inside water molecules. Moreover, flexible sensors, including triboelectric, and strain/pressure sensors, were achieved for human motion detection at low frequencies. This hydrogel is promising for HMI and e-skin.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Amphibious Multifunctional Hydrogel Flexible Haptic Sensor with Self-Compensation Mechanism
    Sun, Zhenhao
    Yin, Yunjiang
    Liu, Baoguo
    Xue, Tao
    Zou, Qiang
    SENSORS, 2024, 24 (10)
  • [22] Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics
    Wang, Dongyue
    Zhang, Dongzhi
    Tang, Mingcong
    Zhang, Hao
    Chen, Fengjiao
    Wang, Tian
    Li, Zheng
    Zhao, Peipei
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [23] A Flexible Fiber-Based Supercapacitor-Triboelectric-Nanogenerator Power System for Wearable Electronics
    Wang, Jie
    Li, Xiuhan
    Zi, Yunlong
    Wang, Sihong
    Li, Zhaoling
    Zheng, Li
    Yi, Fang
    Li, Shengming
    Wang, Zhong Lin
    ADVANCED MATERIALS, 2015, 27 (33) : 4830 - 4836
  • [24] Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics
    Chu, Hyenwoo
    Jang, Houk
    Lee, Yongjun
    Chae, Youngcheol
    Ahn, Jong-Hyun
    NANO ENERGY, 2016, 27 : 298 - 305
  • [25] A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics
    Wang, Xiandi
    Zhang, Yufei
    Zhang, Xiaojia
    Huo, Zhihao
    Li, Xiaoyi
    Que, Miaoling
    Peng, Zhengchun
    Wang, Hui
    Pan, Caofeng
    ADVANCED MATERIALS, 2018, 30 (12)
  • [26] Ultrastretchable, Self-Adhesive and conductive MXene nanocomposite hydrogel for body-surface temperature distinguishing and electrophysiological signal monitoring
    Li, Na
    Wang, Xinliang
    Liu, Ying
    Li, Yunfeng
    Li, Jisheng
    Qin, Zhihui
    Jiao, Tifeng
    CHEMICAL ENGINEERING JOURNAL, 2024, 483
  • [27] A Self-Powered Multifunctional Sensor for Downhole Motor Based on Triboelectric Nanogenerator
    Xu, Jie
    Wang, Yu
    Kong, Lingrong
    Wu, Chuan
    Su, Shida
    Rong, Heqi
    IEEE SENSORS JOURNAL, 2023, 23 (08) : 8252 - 8260
  • [28] A Highly Stretchable Fiber-Based Triboelectric Nanogenerator for Self-Powered Wearable Electronics
    He, Xu
    Zi, Yunlong
    Guo, Hengyu
    Zheng, Haiwu
    Xi, Yi
    Wu, Changsheng
    Wang, Jie
    Zhang, Wei
    Lu, Canhui
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (04)
  • [29] Flexible and Multifunctional Biomass-Based Chlorella Hydrogels for High-Performance Wearable Electronics
    Zhang, Yi
    Xu, Lihong
    Qian, Fujia
    Yan, Bingqiang
    Lin, Zhaoxing
    Chen, Tingjie
    Peng, Xiangfang
    ADVANCED MATERIALS TECHNOLOGIES, 2024,
  • [30] Conductive dual-network hydrogel-based multifunctional triboelectric nanogenerator for temperature and pressure distribution sensing
    Zhao, Leilei
    Fang, Chenyu
    Qin, Binyu
    Yang, Xiya
    Poechmueller, Peter
    NANO ENERGY, 2024, 127