Static state synthesis of STT zeolite membranes for high-pressure H2/ CH4 separation

被引:4
作者
Zhou, Tao [1 ]
Zhu, Mingyu [1 ,2 ]
Dai, Yong [1 ]
Chen, Lingjie [1 ]
Xie, Junyan [1 ]
Zhang, Yuting [1 ]
Wang, Xuerui [1 ]
Gu, Xuehong [1 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Jiangsu, Peoples R China
[2] Quzhou Membrane Mat Innovat Inst, Quzhou 324000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
STT zeolite; Zeolite membrane; Static synthesis; Hydrogen separation; HYDROGEN; CRYSTALLIZATION; PERFORMANCE; MFI;
D O I
10.1016/j.memsci.2024.122699
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
STT zeolite membrane with seven-membered rings (7 MR) and nine-membered rings (9 MR) is an ideal alternative for the separation of hydrogen (H2) and methane (CH4). However, the successful synthesis is only possible in rotation conditions, which is difficult to achieve at an industrial scale. Herein we developed a static synthesis approach to prepare high-quality STT zeolite membranes. The precursor transformed in-situ from a liquid state to a semi-solid state to efficiently suppress the nucleation in the bulk gel. This did not affect the growth of the seed layer to form a continuous membrane. The water content was modulated between y = 44 and y = 124 in the molar composition of 1 SiO2: 0.2 TMAdaOH: y H2O. The precursor could be re-used one more time to reduce the total amount of chemical waste. The optimal H2 permeance and H2/CH4 mixture selectivity was up to 6.1 x 10-8 mol m- 2 s- 1 Pa-1 and 115 at atm pressure. The H2 permeation flux monotonically increased to 2.0 Nm3 m- 2 h-1 under feed pressure up to 2.1 MPa. This paves the way for zeolite membranes to high-pressure H2 separation in practical applications.
引用
收藏
页数:6
相关论文
共 38 条
[1]   Computer simulations of 4240 MOF membranes for H2/CH4 separations: insights into structure-performance relations [J].
Altintas, Cigdem ;
Avci, Gokay ;
Daglar, Hilal ;
Gulcay, Ezgi ;
Erucar, Ilknur ;
Keskin, Seda .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (14) :5836-5847
[2]   Issues and challenges in hydrogen separation technologies [J].
Amin, Muhammad ;
Butt, Ayyaz Shahbaz ;
Ahmad, Jawad ;
Lee, Chaehyeon ;
Ul Azam, Shakir ;
Mannan, Hafiz Abdul ;
Naveed, Abdul Basit ;
Farooqi, Zia Ur Rahman ;
Chung, Eunhyea ;
Iqbal, Amjad .
ENERGY REPORTS, 2023, 9 :894-911
[3]   Template-Free Synthesis of Highly b-Oriented MFI-Type Zeolite Thin Films by Seeded Secondary Growth [J].
Banihashemi, Fateme ;
Ibrahim, Amr F. M. ;
Babaluo, Ali Akbar ;
Lin, Jerry Y. S. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (08) :2519-2523
[4]   Enhanced synthetic efficiency of CHA zeolite crystallized at higher temperatures [J].
Bian, Chaoqun ;
Chen, Fang ;
Zhang, Ling ;
Zhang, Weiping ;
Meng, Xiangju ;
Maurer, Stefan ;
Dai, Daniel ;
Parvulescu, Andrei-Nicolae ;
Mueller, Ulrich ;
Xiao, Feng-Shou .
CATALYSIS TODAY, 2018, 316 :31-36
[5]  
Camblor MA, 1998, ANGEW CHEM INT EDIT, V37, P2122, DOI 10.1002/(SICI)1521-3773(19980817)37:15<2122::AID-ANIE2122>3.0.CO
[6]  
2-6
[7]   Control of zeolite framework flexibility for ultra-selective carbon dioxide separation [J].
Du, Peng ;
Zhang, Yuting ;
Wang, Xuerui ;
Canossa, Stefano ;
Hong, Zhou ;
Nenert, Gwilherm ;
Jin, Wanqin ;
Gu, Xuehong .
NATURE COMMUNICATIONS, 2022, 13 (01)
[8]   Efficient scale-up synthesis and hydrogen separation of hollow fiber DD3R zeolite membranes [J].
Du, Peng ;
Song, Jieyu ;
Wang, Xuerui ;
Zhang, Yuting ;
Xie, Jixian ;
Liu, Gang ;
Liu, Yongli ;
Wang, Zhenwei ;
Hong, Zhou ;
Gu, Xuehong .
JOURNAL OF MEMBRANE SCIENCE, 2021, 636
[9]   Synthesis and performance of STT zeolite membranes for He/N2 and He/CH4 separation [J].
Gong, Chao ;
Peng, Xingyu ;
Zhu, Mingyu ;
Zhou, Tao ;
You, Lekai ;
Ren, Shengyuan ;
Wang, Xuerui ;
Gu, Xuehong .
SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 301
[10]   Synthesis and Gas Permeation Properties of STT-type Zeolite Membranes [J].
Imasaka, Satoshi ;
Nakai, Atsushi ;
Araki, Sadao ;
Yamamoto, Hideki .
JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2018, 61 (05) :263-271