A four-dimensional cousin of the Segre cubic

被引:0
|
作者
Manivel, Laurent [1 ,2 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, UMR 5219, F-31062 Toulouse 9, France
[2] CNRS, F-31062 Toulouse 9, France
关键词
Fano manifold; Segre cubic; prehomogeneous space; small resolution; Grassmannian; rigidity; del Pezzo surface; SPACE; QUADRUPLES;
D O I
10.4171/RMI/1448
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note is devoted to a special Fano fourfold defined by a four-dimensional space of skew -symmetric forms in five variables. This fourfold appears to be closely related with the classical Segre cubic and its Cremona-Richmond configuration of planes. Among other exceptional properties, it is infinitesimally rigid and has Picard number six. We show how to construct it by blow-up and contraction, starting from a configuration of five planes in a four-dimensional quadric, compatibly with the symmetry group 8 5 . From this construction, we are able to describe the Chow ring explicitly.
引用
收藏
页码:1089 / 1114
页数:26
相关论文
共 50 条
  • [31] Remarks on the Segre cubic
    Kenji Koike
    Archiv der Mathematik, 2003, 81 : 155 - 160
  • [32] Remarks on the Segre cubic
    Koike, K
    ARCHIV DER MATHEMATIK, 2003, 81 (02) : 155 - 160
  • [33] Forms of the Segre Cubic
    Avilov, A. A.
    MATHEMATICAL NOTES, 2020, 107 (1-2) : 3 - 9
  • [34] FOUR-DIMENSIONAL NERNST BRANES
    Haack, M.
    ROMANIAN JOURNAL OF PHYSICS, 2012, 57 (5-6): : 849 - 856
  • [35] Commentary - Four-dimensional imaging
    Siegelman, SS
    RADIOLOGY, 1998, 207 (03) : 565 - 565
  • [36] Forms of the Segre Cubic
    A. A. Avilov
    Mathematical Notes, 2020, 107 : 3 - 9
  • [37] FOUR-DIMENSIONAL ELASTIC MEDIUM
    PARIA, G
    ACTA MECHANICA, 1974, 19 (1-2) : 139 - 146
  • [38] Four-dimensional regular polyhedra
    McMullen, Peter
    DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 38 (02) : 355 - 387
  • [39] Four-dimensional radiotherapy planning
    Keall, P
    RADIOTHERAPY AND ONCOLOGY, 2004, 73 : S140 - S140
  • [40] On a four-dimensional chaotic system
    Qi, GY
    Du, SZ
    Chen, GR
    Chen, ZQ
    Yuan, ZZ
    CHAOS SOLITONS & FRACTALS, 2005, 23 (05) : 1671 - 1682