A four-dimensional cousin of the Segre cubic

被引:0
|
作者
Manivel, Laurent [1 ,2 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, UMR 5219, F-31062 Toulouse 9, France
[2] CNRS, F-31062 Toulouse 9, France
关键词
Fano manifold; Segre cubic; prehomogeneous space; small resolution; Grassmannian; rigidity; del Pezzo surface; SPACE; QUADRUPLES;
D O I
10.4171/RMI/1448
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note is devoted to a special Fano fourfold defined by a four-dimensional space of skew -symmetric forms in five variables. This fourfold appears to be closely related with the classical Segre cubic and its Cremona-Richmond configuration of planes. Among other exceptional properties, it is infinitesimally rigid and has Picard number six. We show how to construct it by blow-up and contraction, starting from a configuration of five planes in a four-dimensional quadric, compatibly with the symmetry group 8 5 . From this construction, we are able to describe the Chow ring explicitly.
引用
收藏
页码:1089 / 1114
页数:26
相关论文
共 50 条
  • [21] Four-dimensional photon cavities
    Wharton, K. B.
    NATURE OF LIGHT: WHAT ARE PHOTONS?, 2007, 6664
  • [22] Four-Dimensional Electron Microscopy
    Zewail, Ahmed H.
    SCIENCE, 2010, 328 (5975) : 187 - 193
  • [23] A four-dimensional Neumann ovaloid
    Karp, Lavi
    Lundberg, Erik
    ARKIV FOR MATEMATIK, 2017, 55 (01): : 185 - 198
  • [24] A DUAL FOUR-DIMENSIONAL SUPERSTRING
    Deo, B. B.
    Jena, P. K.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (07): : 1349 - 1365
  • [25] Four-Dimensional Dose Calculations
    Starkschall, G.
    MEDICAL PHYSICS, 2011, 38 (06)
  • [26] Four-dimensional color space
    Sokolov, EN
    BEHAVIORAL AND BRAIN SCIENCES, 1997, 20 (02) : 207 - &
  • [27] Four-Dimensional Graded Consciousness
    Jonkisz, Jakub
    Wierzchon, Michal
    Binder, Marek
    FRONTIERS IN PSYCHOLOGY, 2017, 8
  • [28] On π-Surfaces of Four-Dimensional Parallelohedra
    Garber, Alexey
    ANNALS OF COMBINATORICS, 2017, 21 (04) : 551 - 572
  • [29] On four-dimensional Einstein manifolds
    LeBrun, C
    GEOMETRIC UNIVERSE: SCIENCE, GEOMETRY, AND THE WORK OF ROGER PENROSE, 1998, : 109 - 121
  • [30] On four-dimensional tensor analysis
    Kafka, H
    ANNALEN DER PHYSIK, 1919, 58 (01) : 1 - 54