A four-dimensional cousin of the Segre cubic

被引:0
|
作者
Manivel, Laurent [1 ,2 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, UMR 5219, F-31062 Toulouse 9, France
[2] CNRS, F-31062 Toulouse 9, France
关键词
Fano manifold; Segre cubic; prehomogeneous space; small resolution; Grassmannian; rigidity; del Pezzo surface; SPACE; QUADRUPLES;
D O I
10.4171/RMI/1448
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note is devoted to a special Fano fourfold defined by a four-dimensional space of skew -symmetric forms in five variables. This fourfold appears to be closely related with the classical Segre cubic and its Cremona-Richmond configuration of planes. Among other exceptional properties, it is infinitesimally rigid and has Picard number six. We show how to construct it by blow-up and contraction, starting from a configuration of five planes in a four-dimensional quadric, compatibly with the symmetry group 8 5 . From this construction, we are able to describe the Chow ring explicitly.
引用
收藏
页码:1089 / 1114
页数:26
相关论文
共 50 条
  • [1] Dynamics of a Four-Dimensional System with Cubic Nonlinearities
    Rech, Paulo C.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (01):
  • [2] DEFORMATION CLASSES OF REAL FOUR-DIMENSIONAL CUBIC HYPERSURFACES
    Finashin, S.
    Kharlamov, V.
    JOURNAL OF ALGEBRAIC GEOMETRY, 2008, 17 (04) : 677 - 707
  • [3] Four-dimensional black holes in Einsteinian cubic gravity
    Bueno, Pablo
    Cano, Pablo A.
    PHYSICAL REVIEW D, 2016, 94 (12)
  • [5] Enabling four-dimensional conformal hybrid meshing with cubic pyramids
    Miroslav S. Petrov
    Todor D. Todorov
    Gage S. Walters
    David M. Williams
    Freddie D. Witherden
    Numerical Algorithms, 2022, 91 : 671 - 709
  • [6] Critical behavior of the Ising model on the four-dimensional cubic lattice
    Lundow, P. H.
    Markstrom, K.
    PHYSICAL REVIEW E, 2009, 80 (03):
  • [7] Enabling four-dimensional conformal hybrid meshing with cubic pyramids
    Petrov, Miroslav S.
    Todorov, Todor D.
    Walters, Gage S.
    Williams, David M.
    Witherden, Freddie D.
    NUMERICAL ALGORITHMS, 2022, 91 (02) : 671 - 709
  • [8] CHAMFER DISTANCE ON THE FOUR-DIMENSIONAL FACE-CENTRED CUBIC GRID
    Turgay, Neset Deniz
    Nagy, Benedek
    Kovacs, Gergely
    Vizvari, Bela
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2023, 76 (06): : 839 - 848
  • [9] A multistage linearisation approach to a four-dimensional hyperchaotic system with cubic nonlinearity
    Sandile S. Motsa
    Precious Sibanda
    Nonlinear Dynamics, 2012, 70 : 651 - 657
  • [10] A multistage linearisation approach to a four-dimensional hyperchaotic system with cubic nonlinearity
    Motsa, Sandile S.
    Sibanda, Precious
    NONLINEAR DYNAMICS, 2012, 70 (01) : 651 - 657