Damage evolution of rock-encased-backfill structure under stepwise cyclic triaxial loading

被引:7
作者
Yu, Xin [1 ,2 ,3 ,4 ,5 ,6 ]
Tan, Yuye [4 ,5 ]
Song, Weidong [4 ,5 ]
Kemeny, John [6 ]
Qi, Shengwen [1 ,2 ,3 ]
Zheng, Bowen [1 ,2 ,3 ]
Guo, Songfeng [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Shale Gas & Geoengn, Beijing 100089, Peoples R China
[2] Chinese Acad Sci, Innovat Acad Earth Sci, Beijing 100089, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Sci & Technol Beijing, Sch Civil & Resources Engn, Beijing 100083, Peoples R China
[5] Univ Sci & Technol Beijing, Key Lab High Ef fi cient Min & Safety Met Mines, Minist Educ China, Beijing 100083, Peoples R China
[6] Univ Arizona, Dept Min & Geol Engn, Tucson, AZ 86721 USA
来源
JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING | 2024年 / 16卷 / 02期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Rock and backfill; Triaxial cyclic loading; Volume fraction; Damage evolution; 3D visualization; PASTE BACKFILL; BEHAVIOR; SALT;
D O I
10.1016/j.jrmge.2023.11.015
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Rock-encased-backfill (RB) structures are common in underground mining, for example in the cut-andfill and stoping methods. To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures, a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens (rock on outside, backfill on inside) with different volume fractions of rock (VF 1/4 0.48, 0.61, 0.73, and 0.84), confining pressures (0, 6, 9, and 12 MPa), and cyclic loading rates (200, 300, 400, and 500 N/s). The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops, acoustic emission events, and post-failure X-ray 3D fracture morphology. The results showed significant differences between cyclic and monotonic loadings of RB specimens, particularly with regard to the generation of shear microcracks, the development of stress memory and strain hardening, and the contact forces and associated friction that develops along the rock-backfill interface. One important finding is that as a function of the number of cycles, the elastic strain increases linearly and the dissipated energy increases exponentially. Also, compared with monotonic loading, the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage. Another finding is that compared with monotonic loading, more shear microcracks are generated during every reloading stage, but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation. The transition from elastic to plastic behavior varies depending on the parameters of each test (confinement, volume fraction, and cyclic rate), and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction, 400 N/s cyclic loading rate, and 9 MPa confinement. All the findings have important practical implications on the ability of backfill to support underground excavations. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:597 / 615
页数:19
相关论文
共 50 条
  • [41] Effect of prior cyclic damage on rock failure exposed to triaxial multistage unloading confining pressure and cyclic loads
    Wang, Yu
    Han, Jianqiang
    Li, Peng
    Cai, Meifeng
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2023, 46 (03) : 1140 - 1158
  • [42] Acoustic Emission Characteristics and Damage Evolution of Rock under Different Loading Modes
    Zha, Ersheng
    Zhang, Ru
    Zhang, Zetian
    Ai, Ting
    Ren, Li
    Zhang, Zhaopeng
    Liu, Yang
    Lou, Chendi
    ENERGIES, 2020, 13 (14)
  • [43] Damage Evolution and Deformation of Rock Salt Under Creep-Fatigue Loading
    Kai Zhao
    Hongling Ma
    Chunhe Yang
    Xiangsheng Chen
    Yibiao Liu
    Xiaopeng Liang
    Rui Cai
    Rock Mechanics and Rock Engineering, 2021, 54 : 1985 - 1997
  • [44] Damage Evolution and Deformation of Rock Salt Under Creep-Fatigue Loading
    Zhao, Kai
    Ma, Hongling
    Yang, Chunhe
    Chen, Xiangsheng
    Liu, Yibiao
    Liang, Xiaopeng
    Cai, Rui
    ROCK MECHANICS AND ROCK ENGINEERING, 2021, 54 (04) : 1985 - 1997
  • [45] Experimental investigation on damage evolution behaviour of a granitic rock under loading and unloading
    Dai Bing
    Zhao Guo-yan
    Konietzky, H.
    Wasantha, P. L. P.
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2018, 25 (05) : 1213 - 1225
  • [46] Rock bolts under cyclic loading: Mechanical performance and damage assessment by acoustic emissions
    He, Fengzhen
    Li, Guichen
    Carvelli, Valter
    Xu, Xingliang
    Feng, Xiaowei
    Kan, Jiaguang
    ENGINEERING FAILURE ANALYSIS, 2024, 157
  • [47] Energy and deformation field evolution characteristics of layered cemented paste backfill under cyclic loading and unloading
    Wang, Bingwen
    Yang, Lei
    Li, Qianlong
    Liu, Chenyi
    Gan, Su
    JOURNAL OF BUILDING ENGINEERING, 2024, 95
  • [48] Research on rock damage evolution and acoustic emission characteristics under uniaxial loading
    Liu, Yongfeng
    Wang, Yunhai
    Ma, Haitao
    Zhang, Xiaoqing
    DISASTER ADVANCES, 2013, 6 : 62 - 68
  • [49] Ductile damage evolution under cyclic non-proportional loading paths
    Fincato, Riccardo
    Tsutsumi, Seiichiro
    Momii, Hideto
    IGF WORKSHOP FRACTURE AND STRUCTURAL INTEGRITY, 2018, 9 : 136 - 150
  • [50] Evolution of nonlinear elasticity and crack damage of rock joint under cyclic tension
    Han, Dongya
    Li, Kaihui
    Meng, Jingjing
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2020, 128