Damage evolution of rock-encased-backfill structure under stepwise cyclic triaxial loading

被引:7
|
作者
Yu, Xin [1 ,2 ,3 ,4 ,5 ,6 ]
Tan, Yuye [4 ,5 ]
Song, Weidong [4 ,5 ]
Kemeny, John [6 ]
Qi, Shengwen [1 ,2 ,3 ]
Zheng, Bowen [1 ,2 ,3 ]
Guo, Songfeng [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Shale Gas & Geoengn, Beijing 100089, Peoples R China
[2] Chinese Acad Sci, Innovat Acad Earth Sci, Beijing 100089, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Sci & Technol Beijing, Sch Civil & Resources Engn, Beijing 100083, Peoples R China
[5] Univ Sci & Technol Beijing, Key Lab High Ef fi cient Min & Safety Met Mines, Minist Educ China, Beijing 100083, Peoples R China
[6] Univ Arizona, Dept Min & Geol Engn, Tucson, AZ 86721 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Rock and backfill; Triaxial cyclic loading; Volume fraction; Damage evolution; 3D visualization; PASTE BACKFILL; BEHAVIOR; SALT;
D O I
10.1016/j.jrmge.2023.11.015
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Rock-encased-backfill (RB) structures are common in underground mining, for example in the cut-andfill and stoping methods. To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures, a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens (rock on outside, backfill on inside) with different volume fractions of rock (VF 1/4 0.48, 0.61, 0.73, and 0.84), confining pressures (0, 6, 9, and 12 MPa), and cyclic loading rates (200, 300, 400, and 500 N/s). The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops, acoustic emission events, and post-failure X-ray 3D fracture morphology. The results showed significant differences between cyclic and monotonic loadings of RB specimens, particularly with regard to the generation of shear microcracks, the development of stress memory and strain hardening, and the contact forces and associated friction that develops along the rock-backfill interface. One important finding is that as a function of the number of cycles, the elastic strain increases linearly and the dissipated energy increases exponentially. Also, compared with monotonic loading, the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage. Another finding is that compared with monotonic loading, more shear microcracks are generated during every reloading stage, but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation. The transition from elastic to plastic behavior varies depending on the parameters of each test (confinement, volume fraction, and cyclic rate), and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction, 400 N/s cyclic loading rate, and 9 MPa confinement. All the findings have important practical implications on the ability of backfill to support underground excavations. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:597 / 615
页数:19
相关论文
共 50 条
  • [31] Vibration Effect and Damage Evolution Characteristics of Tunnel Surrounding Rock Under Cyclic Blasting Loading
    Guosheng Zhong
    Yongzhong Lou
    Yuhua Fu
    Journal of Beijing Institute of Technology, 2017, (03) : 324 - 333
  • [32] Energy Evolution and Damage Characteristics of Rock Materials under Different Cyclic Loading and Unloading Paths
    Sun, Bing
    Yang, Haowei
    Fan, Junwei
    Liu, Xiling
    Zeng, Sheng
    BUILDINGS, 2023, 13 (01)
  • [33] Deformation and damage evolution of rock salt under multilevel cyclic loading with constant stress intervals
    Zhao, Kai
    Ma, Hongling
    Li, Yinping
    Li, Peng
    Dong, Zhikai
    Liu, Xin
    Yin, Hongwu
    Yang, Chunhe
    Chen, Xiangsheng
    Engineering Fracture Mechanics, 2022, 260
  • [34] Deformation and damage evolution of rock salt under multilevel cyclic loading with constant stress intervals
    Zhao, Kai
    Ma, Hongling
    Li, Yinping
    Li, Peng
    Dong, Zhikai
    Liu, Xin
    Yin, Hongwu
    Yang, Chunhe
    Chen, Xiangsheng
    ENGINEERING FRACTURE MECHANICS, 2022, 260
  • [35] Damage evolution and characteristics of ultrasonic velocity and acoustic emission for salt rock under triaxial multilevel loading test
    Li H.
    Yang C.
    Li B.
    Yin X.
    1600, Academia Sinica (35): : 682 - 691
  • [36] Progressive damage and permeability characteristic of gas-bearing coal-rock combination under triaxial cyclic loading
    Wang, Kai
    Zuo, Xiaohuan
    Du, Feng
    Sun, Jiazhi
    Li, Kangnan
    Zhang, Xiang
    Guo, Yangyang
    Wang, Dongxu
    PHYSICS OF FLUIDS, 2025, 37 (02)
  • [37] 3D Observations of Fracturing in Rock-Backfill Composite Specimens Under Triaxial Loading
    Xin Yu
    John Kemeny
    Jialuo Li
    Weidong Song
    Yuye Tan
    Rock Mechanics and Rock Engineering, 2021, 54 : 6009 - 6022
  • [38] 3D Observations of Fracturing in Rock-Backfill Composite Specimens Under Triaxial Loading
    Yu, Xin
    Kemeny, John
    Li, Jialuo
    Song, Weidong
    Tan, Yuye
    ROCK MECHANICS AND ROCK ENGINEERING, 2021, 54 (12) : 6009 - 6022
  • [39] Study on energy evolution and permeability characteristics of deep coal damage under triaxial cyclic loading and unloading conditions
    Wang X.
    Zhou H.
    Zhong J.
    Zhang L.
    Wang C.
    An L.
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (12): : 2676 - 2684
  • [40] Damage evolution and acoustic emission characteristics of sandstone under different true triaxial cyclic loading and unloading modes
    Zhang, Qihang
    Meng, Xiangrui
    Zhao, Guangming
    Li, Yingming
    Xu, Wensong
    Liu, Chongyan
    Liu, Zhixi
    Wu, Xukun
    Qin, Zhihong
    Wang, Kun
    ENGINEERING FAILURE ANALYSIS, 2025, 167