funGp: An R Package for Gaussian Process Regression with Scalar and Functional Inputs

被引:1
作者
Betancourt, Jose [1 ]
Bachoc, Francois [1 ]
Klein, Thierry [1 ]
Idier, Deborah [2 ]
Rohmer, Jeremy [2 ]
Deville, Yves [3 ]
机构
[1] Univ Toulouse, Ecole Natl Aviat Civile ENAC, Inst Math Toulouse IMT, 118 Route Narbonne, F-31062 Toulouse 9, France
[2] Bur Rech Geol & Minieres BRGM, 3 Av Claude Guillemin, F-45060 Orleans 2, France
[3] Alpestat, Chambery, France
来源
JOURNAL OF STATISTICAL SOFTWARE | 2024年 / 109卷 / 05期
关键词
Gaussian process; metamodeling; functional inputs; computer experiments; R; ANT COLONY OPTIMIZATION; COMPUTER EXPERIMENTS; CROSS-VALIDATION; MODEL; ALGORITHM; METHODOLOGY;
D O I
10.18637/jss.v109.i05
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article introduces funGp, an R package which handles regression problems involving multiple scalar and/or functional inputs, and a scalar output, through the Gaussian process model. This is particularly of interest for the design and analysis of computer experiments with expensive-to-evaluate numerical codes that take as inputs regularly sampled time series. Rather than imposing any particular parametric input-output relationship in advance (e.g., linear, polynomial), Gaussian process models extract this information directly from the data. The package offers built-in dimension reduction, which helps to simplify the representation of the functional inputs and obtain lighter models. It also implements an ant colony based optimization algorithm which supports the calibration of multiple structural characteristics of the model such as the state of each input (active or inactive) and the type of kernel function, while seeking for greater prediction power. The implemented methods are tested and applied to a real case in the domain of marine flooding.
引用
收藏
页码:1 / 51
页数:51
相关论文
共 75 条
  • [11] Bonabeau E., 1999, Swarm Intelligence: From Natural to Artificial Systems, V4, P320, DOI [10.1093/oso/9780195131581.001.0001, DOI 10.1093/OSO/9780195131581.001.0001]
  • [12] Boosting Functional Regression Models with FDboost
    Brockhaus, Sarah
    Ruegamer, David
    Greven, Sonja
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2020, 94 (10): : 1 - 50
  • [13] A LIMITED MEMORY ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION
    BYRD, RH
    LU, PH
    NOCEDAL, J
    ZHU, CY
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) : 1190 - 1208
  • [14] Gaussian-Process-Based Real-Time Ground Segmentation for Autonomous Land Vehicles
    Chen, Tongtong
    Dai, Bin
    Wang, Ruili
    Liu, Daxue
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2014, 76 (3-4) : 563 - 582
  • [15] Cheng Yafeng, 2016, CRAN
  • [16] Chiles J.-P., 2009, GEOSTATISTICS MODELI, V497
  • [17] THE ORIGINS OF KRIGING
    CRESSIE, N
    [J]. MATHEMATICAL GEOLOGY, 1990, 22 (03): : 239 - 252
  • [18] mlegp:: statistical analysis for computer models of biological systems using R
    Dancik, Garrett M.
    Dorman, Karin S.
    [J]. BIOINFORMATICS, 2008, 24 (17) : 1966 - 1967
  • [19] de Boor Carl., 1978, A Practical Guide to Splines, DOI DOI 10.1007/978-1-4612-6333-3
  • [20] Dorigo M., 1997, IEEE Transactions on Evolutionary Computation, V1, P53, DOI 10.1109/4235.585892