Error analysis for a Crouzeix-Raviart approximation of the p-Dirichlet problem

被引:3
作者
Kaltenbach, Alex [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17,Juni 135, D- 10623 Berlin, Germany
关键词
p-Dirichlet problem; Crouzeix-Raviart element; a priori error analysis; medius error analysis; a posteriori error analysis; FINITE-ELEMENT APPROXIMATION; DISCONTINUOUS GALERKIN APPROXIMATION; NONCONFORMING APPROXIMATION; ELLIPTIC-EQUATIONS; GLOBAL REGULARITY; LAPLACIAN; SYSTEMS; INTERPOLATION; ESTIMATORS; CONVERGENCE;
D O I
10.1515/jnma-2022-0106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we examine a Crouzeix-Raviart approximation for non-linear partial differential equations having a (p, delta)-structure for some p is an element of (1, infinity) and delta >= 0. We establish a priori error estimates, which are optimal for all p is an element of (1, infinity) and delta >= 0, medius error estimates, i.e., best-approximation results, and a primal-dual a posteriori error estimate, which is both reliable and efficient. The theoretical findings are supported by numerical experiments.
引用
收藏
页码:111 / 138
页数:28
相关论文
共 49 条
[1]   REGULARITY FOR MINIMIZERS OF NON-QUADRATIC FUNCTIONALS - THE CASE 1-LESS-THAN-P-LESS-THAN-2 [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 140 (01) :115-135
[2]   A fully asynchronous multifrontal solver using distributed dynamic scheduling [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY ;
Koster, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) :15-41
[3]  
Balay S., 2019, PETSc Web page
[4]  
BARRETT JW, 1994, PITMAN RES, V303, P1
[5]   FINITE-ELEMENT APPROXIMATION OF THE P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
MATHEMATICS OF COMPUTATION, 1993, 61 (204) :523-537
[6]   QUASI-NORM ERROR-BOUNDS FOR THE FINITE-ELEMENT APPROXIMATION OF A NON-NEWTONIAN FLOW [J].
BARRETT, JW ;
LIU, WB .
NUMERISCHE MATHEMATIK, 1994, 68 (04) :437-456
[7]  
Bartels S, 2023, Arxiv, DOI arXiv:2302.01646
[8]   Nonconforming discretizations of convex minimization problems and precise relations to mixed methods [J].
Bartels, Soeren .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 93 :214-229
[9]   Primal-dual gap estimators fora posteriorierror analysis of nonsmooth minimization problems [J].
Bartels, Soeren ;
Milicevic, Marijo .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (05) :1635-1660
[10]   EXPLICIT AND EFFICIENT ERROR ESTIMATION FOR CONVEX MINIMIZATION PROBLEMS [J].
Bartels, Soren ;
Kaltenbach, Alex .
MATHEMATICS OF COMPUTATION, 2023, 92 (343) :2247-2279