High-Precision Indoor Localization Using the Extended Kalman Filter Approach

被引:0
作者
AlShabi, Mohammad [1 ]
Gadsden, S. Andrew [2 ]
Obaideen, Khaled [3 ]
Bonny, Talal [4 ]
机构
[1] Univ Sharjah, Dept Mech & Nucl Engn, POB 27272, Sharjah, U Arab Emirates
[2] McMaster Univ, Dept Mech Engn, Hamilton, ON N1G 2W1, Canada
[3] Bio Sensing & Bio Sensors Grp, Smart Automat & Commun Technol, RISE, Sharjah, U Arab Emirates
[4] Univ Sharjah, Dept Comp Engn, POB 27272, Sharjah, U Arab Emirates
来源
LASER RADAR TECHNOLOGY AND APPLICATIONS XXIX | 2024年 / 13049卷
关键词
Extended Kalman Filter; estimation strategies; target tracking; mobile robot; LITHIUM-ION BATTERY; ARTIFICIAL NEURAL-NETWORKS; UNMANNED AERIAL VEHICLE; USEFUL LIFE PREDICTION; OF-CHARGE ESTIMATION; STATE ESTIMATION; PARAMETER; SYSTEMS; OBSERVER; DESIGN;
D O I
10.1117/12.3015941
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Indoor positioning and navigation have emerged as critical areas of research due to the limitations of GPS in enclosed environments. This study presents an innovative approach to high-precision indoor localization by employing the Extended Kalman Filter (EKF). Unlike traditional methods that often suffer from noise and multi-path effects, the EKF methodology accounts for nonlinearities and offers a recursive solution to estimate the state of dynamic systems. We deployed a sensor on a mobile robot that needs to move in an indoor environment while there is a moving obstacle that is moving around. Our findings demonstrate a significant accuracy in locating the obstacle while maneuvering inside the environment.
引用
收藏
页数:9
相关论文
共 96 条
  • [2] Gaussian filters for parameter and state estimation: A general review of theory and recent trends
    Afshari, H. H.
    Gadsden, S. A.
    Habibi, S.
    [J]. SIGNAL PROCESSING, 2017, 135 : 218 - 238
  • [3] Deep learning for unmanned aerial vehicles detection: A review
    Al-lQubaydhi, Nader
    Alenezi, Abdulrahman
    Alanazi, Turki
    Senyor, Abdulrahman
    Alanezi, Naif
    Alotaibi, Bandar
    Alotaibi, Munif
    Razaque, Abdul
    Hariri, Salim
    [J]. COMPUTER SCIENCE REVIEW, 2024, 51
  • [4] Kalman filtering strategies utilizing the chattering effects of the smooth variable structure filter
    Al-Shabi, M.
    Gadsden, S. A.
    Habibi, S. R.
    [J]. SIGNAL PROCESSING, 2013, 93 (02) : 420 - 431
  • [5] Al-Shabi M., 2011 IEEE JORD C APP, P1
  • [6] Al-Shabi M., 2015 IEEE 12 INT MUL, P1
  • [7] Al-Shabi M., 2017 7 INT C MOD SIM, P1
  • [8] ROBUST NONLINEAR CONTROL AND ESTIMATION OF A PRRR ROBOT SYSTEM
    Al-Shabi, Mohammad
    Hatamleh, Khaled S.
    Gadsden, Stephen A.
    Soudan, Bassel
    Elnady, A.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2019, 34 (06) : 632 - 644
  • [9] Unmanned Ground Vehicles (UGVs)-based mobile sensing for Indoor Environmental Quality (IEQ) monitoring: Current challenges and future directions
    Alinezhad, Ebrahim
    Gan, Victor
    Chang, Victor W. -C
    Zhou, Jin
    [J]. JOURNAL OF BUILDING ENGINEERING, 2024, 88
  • [10] Nonlinear coordination strategy between renewable energy sources and fuel cells for frequency regulation of hybrid power systems
    Almasoudi, Fahad M.
    Bakeer, Abualkasim
    Magdy, Gaber
    Alatawi, Khaled Saleem S.
    Shabib, Gaber
    Lakhouit, Abderrahim
    Alomrani, Sultan E.
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (02)