Investigation of picosecond laser-induced graphene for dopamine sensing: Influence of laser wavelength on structural and electrochemical performance

被引:4
作者
Gaidukevic, Justina [1 ,2 ]
Trusovas, Romualdas [3 ]
Sartanavic, Aivaras
Pauliukaite, Rasa [2 ]
Niaura, Gediminas [4 ]
Kozlowski, Mieczyslaw [5 ]
Barkauskas, Jurgis [1 ]
机构
[1] Vilnius Univ, Inst Chem, Fac Chem & Geosci, Naugarduko 24, LT-03225 Vilnius, Lithuania
[2] Ctr Phys Sci & Technol, Dept Nanoengn, Savanoriu Ave 231, LT-02300 Vilnius, Lithuania
[3] Ctr Phys Sci & Technol, Dept Laser Technol, Savanoriu Ave 231, LT-02300 Vilnius, Lithuania
[4] Ctr Phys Sci & Technol, Dept Organ Chem, Sauletekio Ave 3, LT-10257 Vilnius, Lithuania
[5] Adam Mickiewicz Univ, Fac Chem, Umultowska 89b, PL-61614 Poznan, Poland
关键词
A. layered compounds; A; nanostructures; B. laser annealing; D. electrochemical properties; D. surface properties; RAMAN-SPECTROSCOPY; REDUCTION; OXIDE; EVOLUTION; NITROGEN; SYSTEMS; SENSOR;
D O I
10.1016/j.materresbull.2024.112916
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This research focuses on a straightforward synthesis method for laser-induced graphene using green (532 nm) and UV (355 nm) picosecond laser irradiation of graphene oxide dispersion. Structural analysis revealed that the laser operating at 355 nm is more favorable to producing a product with a higher content of the restored sp2 network, a higher graphene in-plane crystallite size, a higher concentration of pyrrolic N, and higher values of the optical bandgap. Conversely, the 532 nm laser yielded a sample with higher concentrations of epoxy groups, sp3 defects, and amorphous carbon. Electrochemical analysis for dopamine determination showed potential for both samples as electrode materials. However, the analytical parameters of the sample treated with the 355 nm laser surpass those of the 532 nm laser. It was assumed that the enhanced electrochemical activity results from the presence of pyrrolic N and vacancies in the structure of the sample treated with the 355 nm laser.
引用
收藏
页数:11
相关论文
共 50 条
[31]   Adsorption-Enhanced Sensitivity for Electrochemical Sensing of Diclofenac by Poly(ether sulfone)-Based Laser-Induced Graphene [J].
Wanjari, Vikram P. ;
Kumar, Pawan ;
Duttagupta, Siddhartha P. ;
Singh, Swatantra P. .
LANGMUIR, 2024, 41 (01) :152-161
[32]   POWER DENSITY INFLUENCE ON LASER-INDUCED GRAPHITE STRUCTURAL MODIFICATIONS [J].
Avotina, L. ;
Marcu, A. ;
Lungu, M. ;
Stancalie, A. ;
Grigorescu, C. ;
Ilie, A. G. ;
Porosnicu, C. ;
Mihai, L. ;
Sporea, D. ;
Lungu, C. ;
Somacescu, S. ;
Kizane, G. ;
Savastru, D. ;
Antohe, S. .
DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2016, 11 (03) :973-981
[33]   Electrodeposited Silver Dendrites on Laser-Induced Graphene for Electrochemical Detection of Nitrate with Tunable Sensor Properties [J].
Adiraju, Anurag ;
Jalasutram, Aditya ;
Wang, Junfei ;
Tegenkamp, Christoph ;
Kanoun, Olfa .
ADVANCED MATERIALS INTERFACES, 2024, 11 (19)
[34]   Room-Temperature Ammonia Sensing Using Polyaniline-Coated Laser-Induced Graphene [J].
Santos-Ceballos, Jose Carlos ;
Salehnia, Foad ;
Guell, Frank ;
Romero, Alfonso ;
Vilanova, Xavier ;
Llobet, Eduard .
SENSORS, 2024, 24 (23)
[35]   Laser-Induced Graphene-Based Sensors in Health Monitoring: Progress, Sensing Mechanisms, and Applications [J].
Li, Zihao ;
Huang, Libei ;
Cheng, Le ;
Guo, Weihua ;
Ye, Ruquan .
SMALL METHODS, 2024, 8 (11)
[36]   Laser-Induced Metal-Organic Framework-Derived Flexible Electrodes for Electrochemical Sensing [J].
De Chiara, Beatrice ;
Del Duca, Fulvia ;
Hussain, Mian Zahid ;
Kratky, Tim ;
Banerjee, Pritam ;
Dummert, Sarah V. ;
Khoshouei, Ali ;
Chanut, Nicolas ;
Peng, Hu ;
Al Boustani, George ;
Hiendlmeier, Lukas ;
Jinschek, Joerg ;
Ameloot, Rob ;
Dietz, Hendrik ;
Wolfrum, Bernhard .
ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (02) :3772-3784
[37]   Enhanced electrochemical performance of sulfur-doped laser-induced graphene supercapacitors: Synergistic effects of doping and plasmochemical surface modification [J].
Shahsavarifar, Samaneh ;
Jakobczyk, Pawel ;
Wcislo, Anna ;
Ryl, Jacek ;
Bogdanowicz, Robert .
APPLIED SURFACE SCIENCE, 2025, 689
[38]   Laser-Induced Graphene-Based microfluidic electrochemical biosensor for clinical analysis [J].
Karintrithip, Wimala ;
Boobphahom, Siraprapa ;
Puthongkham, Pumidech ;
Sakdaphetsiri, Kittiya ;
Rodthongkum, Nadnudda .
MICROCHEMICAL JOURNAL, 2025, 213
[39]   Laser-induced graphene-based electrochemical biosensors for environmental applications: a perspective [J].
Wanjari, Vikram P. ;
Reddy, A. Sudharshan ;
Duttagupta, Siddhartha P. ;
Singh, Swatantra P. .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (15) :42643-42657
[40]   Laser-induced porous graphene electrodes from polyketimine membranes for paracetamol sensing [J].
Baachaoui, Sabrine ;
Mabrouk, Walid ;
Charradi, Khaled ;
Slimi, Bechir ;
Ramadan, Ahmed M. ;
Elsamra, Rehab M. I. ;
Alhussein, Akram ;
Keshk, Sherif M. A. S. ;
Raouafi, Noureddine .
ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (08)