Anomalous diffusion of the heavy quarks through the fractional Langevin equation

被引:3
|
作者
Prakash, Jai [1 ,2 ]
机构
[1] Indian Inst Technol, Dept Phys, Mumbai 400076, India
[2] Indian Inst Technol Goa, Sch Phys Sci, Ponda 403401, Goa, India
关键词
NUCLEUS-NUCLEUS COLLISIONS; EQUILIBRIUM; TRANSPORT; MODELS; FLAVOR;
D O I
10.1103/PhysRevD.109.114004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The dynamics of heavy quarks within the hot QCD medium have been revisited, considering the influence of anomalous diffusion. This study has been conducted using the framework of the fractional Langevin equation involving the Caputo fractional derivative. We introduce a numerical scheme for the fractional Langevin equation and demonstrate that the mean-squared displacement of the particle exhibits anomalous diffusion, deviating from a linear relationship with time. Our analysis calculates various entities, such as mean-squared momentum, momentum spread, and the nuclear suppression factor RAA. Notably, our findings indicate that superdiffusion strongly suppresses the RAA compared to normal diffusion in the hot QCD medium. The possible impacts on other parameters are also discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Analysis of anomalous transport based on radial fractional diffusion equation
    吴凯邦
    魏来
    王正汹
    Plasma Science and Technology, 2022, 24 (04) : 109 - 116
  • [42] Anomalous fractional diffusion equation for magnetic losses in a ferromagnetic lamination
    Ducharne, B.
    Deffo, Y. A. Tene
    Zhang, B.
    Sebald, G.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (03):
  • [43] Anomalous diffusion: nonlinear fractional Fokker-Planck equation
    Tsallis, C
    Lenzi, EK
    CHEMICAL PHYSICS, 2002, 284 (1-2) : 341 - 347
  • [44] Analysis of anomalous transport based on radial fractional diffusion equation
    Wu, Kaibang
    Wei, Lai
    Wang, Zhengxiong
    PLASMA SCIENCE & TECHNOLOGY, 2022, 24 (04)
  • [45] Solutions for a fractional diffusion equation: Anomalous diffusion and adsorption-desorption processes
    Lenzi, E. K.
    dos Santos, M. A. F.
    Lenzi, M. K.
    Vieira, D. S.
    da Silva, L. R.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) : 3 - 6
  • [46] Numerical simulation of fractional advection-diffusion equation: A method to anomalous diffusion
    Xia, Y.
    Wu, J. C.
    CALIBRATION AND RELIABILITY IN GROUNDWATER MODELING: MANAGING GROUNDWATER AND THE ENVIRONMENT, 2009, : 433 - 436
  • [47] Anomalous diffusion governed by a fractional diffusion equation and the electrical response of an electrolytic cell
    Santoro, P. A.
    de Paula, J. L.
    Lenzi, E. K.
    Evangelista, L. R.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (11):
  • [48] NUMERICAL SIMULATION OF THE FRACTIONAL LANGEVIN EQUATION
    Guo, Peng
    Li, Changpin
    Zeng, Fanhai
    THERMAL SCIENCE, 2012, 16 (02): : 357 - 363
  • [49] Langevin equation with two fractional orders
    Lim, S. C.
    Li, Ming
    Teo, L. P.
    PHYSICS LETTERS A, 2008, 372 (42) : 6309 - 6320
  • [50] SOLVABILITY FOR IMPULSIVE FRACTIONAL LANGEVIN EQUATION
    Xu, Mengrui
    Sun, Shurong
    Han, Zhenlai
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (02): : 486 - 494