Anomalous diffusion of the heavy quarks through the fractional Langevin equation

被引:3
|
作者
Prakash, Jai [1 ,2 ]
机构
[1] Indian Inst Technol, Dept Phys, Mumbai 400076, India
[2] Indian Inst Technol Goa, Sch Phys Sci, Ponda 403401, Goa, India
关键词
NUCLEUS-NUCLEUS COLLISIONS; EQUILIBRIUM; TRANSPORT; MODELS; FLAVOR;
D O I
10.1103/PhysRevD.109.114004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The dynamics of heavy quarks within the hot QCD medium have been revisited, considering the influence of anomalous diffusion. This study has been conducted using the framework of the fractional Langevin equation involving the Caputo fractional derivative. We introduce a numerical scheme for the fractional Langevin equation and demonstrate that the mean-squared displacement of the particle exhibits anomalous diffusion, deviating from a linear relationship with time. Our analysis calculates various entities, such as mean-squared momentum, momentum spread, and the nuclear suppression factor RAA. Notably, our findings indicate that superdiffusion strongly suppresses the RAA compared to normal diffusion in the hot QCD medium. The possible impacts on other parameters are also discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation
    Wang, Zhibo
    Vong, Seakweng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 277 : 1 - 15
  • [32] Diffusion of an Active Particle Bound to a Generalized Elastic Model: Fractional Langevin Equation
    Taloni, Alessandro
    FRACTAL AND FRACTIONAL, 2024, 8 (02)
  • [33] Subdiffusive transport close to thermal equilibrium: From the Langevin equation to fractional diffusion
    Metzler, R
    Klafter, J
    PHYSICAL REVIEW E, 2000, 61 (06): : 6308 - 6311
  • [34] A langevin approach to the diffusion equation
    Spagnolo, B
    Barrera, P
    AIR POLLUTION MODELLING AND SIMULATION, PROCEEDINGS, 2002, : 380 - 387
  • [35] Analysis of anomalous transport based on radial fractional diffusion equation
    吴凯邦
    魏来
    王正汹
    Plasma Science and Technology, 2022, (04) : 109 - 116
  • [36] A fractional equation for anomalous diffusion in a randomly heterogeneous porous medium
    Logvinova, K
    Néel, MC
    CHAOS, 2004, 14 (04) : 982 - 987
  • [37] Levy anomalous diffusion and fractional Fokker-Planck equation
    Yanovsky, VV
    Chechkin, AV
    Schertzer, D
    Tur, AV
    PHYSICA A, 2000, 282 (1-2): : 13 - 34
  • [38] Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion
    Zhang, Xinguang
    Liu, Lishan
    Wu, Yonghong
    Wiwatanapataphee, B.
    APPLIED MATHEMATICS LETTERS, 2017, 66 : 1 - 8
  • [39] Anomalous fractional diffusion equation for magnetic losses in a ferromagnetic lamination
    B. Ducharne
    Y. A. Tene Deffo
    B. Zhang
    G. Sebald
    The European Physical Journal Plus, 135
  • [40] FUNDAMENTAL SOLUTION OF THE MODEL EQUATION OF ANOMALOUS DIFFUSION OF FRACTIONAL ORDER
    Khushtova, F. G.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2015, 19 (04): : 722 - 735